Abstract
Solid oxide fuel cell (SOFC) directly operating on hydrocarbon without external reforming has the potential of greatly speeding up the application of SOFCs for transportation. In this paper, a three-layer structure anode was fabricated by tape casting and screen printing method. The addition of Cu-LSCM-CeO2 to the supported anode surface presented better performance running on H2 and ethanol. The maximum power densities were 511 and 390 mW?cm-2, respectively, running on H2 and ethanol at 750 °C. No significant degradation was observed on the anode. Consequently, the Cu-LSCM-CeO2 catalyst layer on the surface of the LSCM-YSZ support layer makes it possible to have good stability for long-term operation in ethanol fuel due to free carbon deposition.
Graphical Abstract
Keywords
solid oxide fuel cell, catalyst layer, carbon deposit, impedance spectra, electrochemical performance
Publication Date
2014-10-28
Online Available Date
2014-02-23
Revised Date
2014-02-18
Received Date
2013-11-29
Recommended Citation
Yao LV, Bo HUANG, Xi-zhi GU, Chun-yi HOU, Yi-xing HU, Xiao-yin WANG, Xin-jian ZHU.
Fabrication and Characterization of the Ni-ScSZ Composite Anodes with a Cu-LSCM-CeO2 Catalyst Layer in the Thin Film SOFC[J]. Journal of Electrochemistry,
2014
,
20(5): 470-475.
DOI: 10.13208/j.electrochem.131129
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss5/10
References
[1] Lawlor V, Griesser S, Buchinger G, et al. Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities[J]. Journal of power sources, 2009, 193(2): 387-399.
[2] Suzuki T, Yamaguchi T, Fujishiro Y, et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC[J]. Journal of the Electrochemical Society, 2006, 153(5): A925-A928.
[3] Lee T J, Kendall K. Characterisation of electrical performance of anode supported micro-tubular solid oxide fuel cell with methane fuel[J]. Journal of Power Sources, 2008, 181(2): 195-198.
[4] Steele B C H. Fuel-cell technology: Running on natural gas[J]. Nature, 1999, 400(6745): 619-621.
[5] Zhan Z, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308(5723): 844-847.
[6] Gunji A, Wen C, Otomo J, et al. Carbon deposition behaviour on Ni-ScSZ anodes for internal reforming solid oxide fuel cells[J]. Journal of power sources, 2004, 131(1): 285-288.
[7] Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons[J]. Journal of catalysis, 2003, 216(1): 477-486.
[8] Park S, Craciun R, Vohs J M, et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation[J]. Journal of the Electrochemical Society, 1999, 146(10): 3603-3605.
[9] McIntosh S, Vohs J M, Gorte R J. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes[J]. Electrochemica acta, 2002, 47(22): 3815-3821.
[10] McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104(10): 4845-4866.
[11] Brett D J L, Atkinson A, Cumming D, et al. Methanol as a direct fuel in intermediate temperature solid oxide fuel cells with copper based anodes[J]. Chemical Engineering Science, 2005, 60(21): 5649-5662.
[12] Sun C, Stimming U. Recent anode advances in solid oxide fuel cells[J]. Journal of Power Sources, 2007, 171(2): 247-260.
[13] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651.
[14] Qi X, Flytzani-Stephanopoulos M. Activity and stability of Cu-CeO2 catalysts in high-temperature water-gas shift for fuel-cell applications[J]. Industrial & engineering chemistry research, 2004, 43(12): 3055-3062.
[15] Bi Z H, Zhu J H. A Cu-CeO2-LDC composite anode for LSGM electrolyte-supported solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2009, 12(7): B107-B111.
[16] Qiao J, Zhang N, Wang Z, et al. Performance of mix impregnated CeO2 Ni/YSZ anodes for direct oxidation of methane in solid oxide fuel cells[J]. Fuel Cells, 2009, 9(5): 729-739.
[17] Ye X F, Zhou J, Wang S R, et al. Research of carbon deposition formation and judgment in Cu-CeO2-ScSZ anodes for direct ethanol solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(1): 505-510.
[18] Tao S, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323.
[19] Tao S, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of The Electrochemical Society, 2004, 151(2): A252-A259.
[20] Périllat-Merceroz C, Gauthier G, Roussel P, et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane[J]. Chemistry of Materials, 2011, 23(6): 1539-1550.
[21] Kim J H, Miller D, Schlegl H, et al. Investigation of microstructural and electrochemical properties of impregnated (La, Sr)(Ti, Mn) O3±δ as a potential anode material in high-temperature solid oxide fuel cells[J]. Chemistry of Materials, 2011, 23(17): 3841-3847.
[22] Monteiro N K, Noronha F B, Da Costa L O O, et al. A direct ethanol anode for solid oxide fuel cell based on a chromite-manganite with catalytic ruthenium nanoparticles[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9816-9829.
[23] Zhan Z, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308(5723): 844-847.
[24] Zhan Z, Lin Y, Pillai M, et al. High-rate electrochemical partial oxidation of methane in solid oxide fuel cells[J]. Journal of power sources, 2006, 161(1): 460-465.
[25] Jiang S P, Chan S H. Review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39(14): 4405-4439.
[26] Wang W, Ran R, Shao Z. Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane[J]. International Journal of Hydrogen Energy, 2011, 36(1): 755-764.
[27] Hornés A, Bera P, Fernández-García M, et al. Catalytic and redox properties of bimetallic Cu-Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition[J].Applied Catalysis B: Environmental,2012,111: 96-105.
[28] Yun J W, Yoon S P, Kim H S, et al. Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4356-4366.
[29] Zhu H, Wang W, Ran R, et al. A new nickel-ceria composite for direct-methane solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(9): 3741-3749.
[30] Jin C, Yang C, Zheng H, et al. Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer[J]. Journal of Power Sources, 2012, 201: 66-71.
[31] Bo Huang, S.R. Wang, R.Z. Liu, et al. Performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel[J]. Journal of Power Sources, 2007, 167(1): 39-46.
[32] Ye X F, Wang S R, Wang Z R, et al. Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2008, 177(2): 419-425.
[33] Ioselevich A, Kornyshev A A, Lehnert W. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation[J]. Solid State Ionics, 1999, 124(3): 221-237.
[34] Ioselevich A, Kornyshev A A, Lehnert W. Degradation of solid oxide fuel cell anodes due to sintering of metal particles correlated percolation model[J]. Journal of the Electrochemical Society, 1997, 144(9): 3010-3019.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons