Abstract
Graphene oxide (GO) was prepared by modified Hummers method. Using the GO solution as "ink", Au nanoparticles (AuNPs) and GO were transferred to the surface of ITO substrate modified with (3-aminopropyl) triethoxysilane (APTES/ITO) in a sequence. The transferred AuNPs and GO could form a uniform and dense composite pattern which was characterized by FE-SEM and AFM. Moreover, using the APTES/ITO substrate surface potential as zero, the sequences of the surface potential were APTES>GO>Au.
Graphical Abstract
Keywords
graphene oxide, Au nanoparticles, microcontact printing technique
Publication Date
2014-10-28
Online Available Date
2014-04-13
Revised Date
2014-04-08
Received Date
2014-02-08
Recommended Citation
Wen-hui PANG, Xiao-jian XIAO, Meng-wei YE, Kai-chao DENG, Jing TANG.
Fabrication of Pattern of Graphene Oxide and Au Nanoparticles by Microcontanct Printing Technique[J]. Journal of Electrochemistry,
2014
,
20(5): 452-458.
DOI: 10.13208/j.electrochem.131175
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss5/7
References
[1] Zhou Y, Loh K P. Making patterns on graphene[J]. Advanced Materials, 2010, 22(32): 3615-3620.
[2] Han M Y, ?zyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons[J]. Physical Review Letters, 2007, 98(20): 206805.
[3] Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 2010, 22(1): 67-71.
[4] Liang X G, Fu Z L, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Letters, 2007, 7(12): 3840-3844.
[5] Devadas B, Rajkumar M, Chen S M, et al. Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetamol[J]. International Journal of Electrochemical Science, 2012, 7: 3339-3349.
[6] Liu J Q, Yin Z Y, Cao X H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes[J]. ACS Nano, 2010, 4(7): 3987-3992.
[7] Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.
[8] Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3): 463-470.
[9] Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
[10] Tang J(汤儆), Pang W H(庞文辉), Ren H(任禾), et al. Rapid transfer of Au nanoparticles pattern onto ITO substrates using microcontact printing technique[J]. Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(3): 612-618.
[11] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[12] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814.
[13] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857.
[14] Qin D, Xia Y N, Whitesides G M. Soft lithography for micro- and nanoscale patterning[J]. Nature Protocols, 2010, 5(3): 491-502.
[15] Tang J(汤儆), Tian X C(田晓春), Zhou F Q(周富庆), et al. Mechanism of Au electrodeposition onto indium tin oxide[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(3): 641-646.
[16] Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 2010, 22(22): 2392-2415.
[17] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401.
[18] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357-2363.
[19] Ambrosi A, Bonanni A, Sofer Z, et al. Electrochemistry at chemically modified graphenes[J]. Chemistry-A European Journal, 2011, 17(38): 10763-10700.
[20] Dreyer D R, Murali S, Zhu Y, et al. Reduction of graphite oxide using alcohols[J]. Journal of Materials Chemistry, 2011, 21(10): 3443-3447.
[21] Park S, An J, JungI, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
[22] Acres R G, Ellis A V, Alvino J, et al. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6289-6297.
[23] Ballarin B, Cassani M C, Scavetta E, et al. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect[J]. Electrochimica Acta, 2008, 53(27): 8034-8044.
[24] Jaafar M, Lo?pez-Poli?n G, Go?mez-Navarro C, et al. Step like surface potential on few layered graphene oxide[J]. Applied Physics Letters, 2012, 101(26): 263109.
[25] Moores B, Simons J, Xu S, et al. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential[J]. Nanoscale Research Letters, 2011, 6(1): 185.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons