Abstract
Single-wall carbon nanohorns (SWCNHs) have unique properties, such as a large specific surface area, good electrical conductivity and biocompatibility. It has been widely utilized in many fields. In the present review, the progress in electrochemistry study of SWCNHs has been summarized and the future research trends have been proposed.
Graphical Abstract
Keywords
single-walled carbon nanohorns, electrochemistry, review
Publication Date
2014-12-28
Online Available Date
2014-07-16
Revised Date
2014-07-11
Received Date
2014-05-13
Recommended Citation
Su-ping LI, Huai-min GUAN, Shu-yun ZHU, Muhammad Rehan Hassan Shah GILANI, Saima HANIF, Guo-bao XU, Yue-jin TONG.
Electrochemical Applications of Single-walled Carbon Nanohorns[J]. Journal of Electrochemistry,
2014
,
20(6): 501-505.
DOI: 10.13208/j.electrochem.140433
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss6/1
References
[1] Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chemical Physics Letters, 1999, 309(3/4): 165-170.
[2] Liu Y, Brown C M, Neumann D A, et al. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns[J]. Carbon, 2012, 50(13): 4953-4964.
[3] Krungleviciute V, Ziegler C A, Banjara S R, et al. Neon and CO2 adsorption on open carbon nanohorns[J]. Langmuir, 2013, 29(30): 9388-9397.
[4] Kosaka M, Kuroshima S, Kobayashi K, et al. Single-wall carbon nanohorns supporting Pt catalyst in direct methanol fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(20): 8660-8667.
[5] Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers[J]. Molecular Pharmaceutics, 2005, 2(6): 475-480.
[6] Penza M, Aversa P, Cassano G, et al. Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating[J]. Sensors and actuators B: Chemical, 2007, 127(1): 168-178.
[7] Chen G, Dai H, Zhang S, et al. A sensitive arecoline photoelectrochemical sensor based on graphitic carbon nitride nanosheets activated by carbon nanohorns[J]. RSC Advances, 2014, 4(22): 11099-11102.
[8] Shi L, Liu X, Niu W, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean Peroxidase immobilized on single-walled carbon nanohorn modified electrode[J]. Biosensors & Bioelectronics, 2009, 24(5): 1159-1163.
[9] Liu X, Li H, Wang F, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosensors & Bioelectronics, 2010, 25(10): 2194-2199.
[10] ?vancara I, Vyt?as K, Barek J, et al. Carbon paste electrodes in modern electroanalysis[J]. Critical Reviews in Analytical Chemistry, 2001, 31(4): 311-345.
[11] Zakharchuk N F, Meyer B, Henning H, et al. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue[J]. Journal of Electroanalytical Chemistry, 1995, 398(1): 23-35.
[12] Kalcher K, Kauffmann J M, Wang J, et al. Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990-1993[J]. Electroanalysis, 1995, 7(1): 5-22.
[13] Matuszewski W, Trojanowicz M. Graphite paste-based enzymatic glucose electrode for flow injection analysis[J]. Analyst, 1988, 113(5): 735-738.
[14] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode[J]. Electrochemistry Communications, 2003, 5(8): 689-694.
[15] Antiochia R, Gorton L. Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages[J]. Biosensors and Bioelectronics, 2007, 22(11): 2611-2617.
[16] Sanghavi B J, Srivastava A K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode[J]. Electrochimica Acta, 2010, 55(28): 8638-8648.
[17] Ensafi A, Karimi-Maleh H, Mallakpour S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode[J]. Colloids and Surfaces B: Biointerfaces, 2013, 104: 186-193.
[18] Zhu S, Fan L, Liu X, et al. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode[J]. Electrochemistry Communications, 2008, 10(5): 695-698.
[19] Zhu S, Niu W, Li H, et al. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample[J]. Talanta, 2009, 79(5): 1441-1445.
[20] Zhu S, Gao W, Zhang L, et al. Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2014, 198: 388-394.
[21] Zhu S, Li H, Niu W, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2009, 25(4): 940-943.
[22] Zhu S, Zhang J, Zhao X E, et al. Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns[J]. Microchimica Acta, 2014, 181(3/4): 445-451.
[23] Xu G, Gong L, Dai H, et al. Electrochemical bisphenol A sensor based on carbon nanohorns[J]. Analytical Methods, 2013, 5(13): 3328-3333.
[24] Yang F, Han J, Zhuo Y, et al. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection[J]. Biosensors & Bioelectronics, 2014, 55: 360-365.
[25] Zhang J, Lei J, Xu C, et al. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR[J]. Analytical Chemistry, 2010, 82(3): 1117-1122.
[26] Liu F, Xiang G, Chen X, et al. A novel strategy of procalcitonin detection based on multi-nanomaterials of single-walled carbon nanohorns-hollow Pt nanospheres/PAMAM as signal tags[J]. RSC Advances, 2014, 4(27): 13934-13940.
[27] Qian R, Ding L, Bao L, et al. In situ electrochemical assay of cell surface sialic acids featuring highly efficient chemoselective recognition and a dual-functionalized nanohorn probe[J]. Chemical Communications, 2012, 48(32): 3848-3850.
[28] Dai H, Yang C, Ma X, et al. A highly sensitive and selective sensing ECL platform for naringin based on beta-cyclodextrin functionalized carbon nanohorns[j]. chemical Communications, 2011, 47(43): 11915-11917.
[29] Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors & Bioelectronics, 2008, 23(12): 1887-1890.
[30] Xu W, Wang Z, Guo Z, et al. Nanoporous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries[J]. Journal of Power Sources, 2013, 232: 193-198.
[31] Zhao Y, Li J, Ding Y, et al. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries[J]. Chemical Communications, 2011, 47(26): 7416-7418.
[32] Zhao Y, Li J, Ding Y, et al. A nanocomposite of SnO2 and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries[J]. RSC Advances, 2011, 1(5): 852-856.
[33] Aissa B, Hamoudi Z, Takahashi H, et al. Carbon nanohorns-coated microfibers for use as free-standing electrodes for electrochemical power sources[J]. Electrochemistry Communications, 2009, 11(4): 862-866.
[34] Wang Z, Luan D, Madhavi S, et al. Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science, 2012, 5(1): 5252-5256.
[35] Yuge R, Manako T, Nakahara K, et al. The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area[J]. Carbon, 2012, 50(15): 5569-5573.
[36] Izadi-Najafabadi A, Yamada T, Futaba D N, et al. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite[J]. ACS Nano, 2011, 5(2): 811-819.
[37] Gattia D M, Antisari M V, Giorgi L, et al. Study of different nanostructured carbon supports for fuel cell catalysts[J]. Journal of Power Sources, 2009, 194(1): 243-251.
[38] Boaventura M, Brandao L, Mendes A. Single-wall nanohorns as electrocatalyst support for high temperature PEM fuel cells[J]. Journal of the Electrochemical Society, 2011, 158(4): B394-B401.
[39] Brandao L, Boaventura M, Ribeirinha P. Single wall nanohorns as electrocatalyst support for vapour phase high temperature DMFC[J]. International Journal of Hydrogen Energy, 2012, 37(24): 19073-19081.
[40] Niu B, Xu W, Guo Z, et al. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(9): 7376-7381.
[41] Brandao L, Boaventura M, Passeira C, et al. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(10): 9016-9024.
[42] Yuan D, Zeng J, Chen J, et al. Synthesis of hollow-cone-like carbon and its application as support material for fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(3): B377-B380.
[43] Wen D, Deng L, Zhou M, et al. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition[J]. Biosensors & Bioelectronics, 2010, 25(6): 1544-1547.
[44] Casillas R, Lodermeyer F, Costa R D, et al. Substituting TiCl4-carbon nanohorn interfaces for dye-sensitized solar cells[J]. Advanced Energy Materials, 2014, 4(6), DOI: 10.1002/aenm.201301577.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons