Abstract
The selenium (Se) templates and hollow platinum (Pthollow) nanospheres with different sizes were controllably synthesized by adjusting the concentration of sodium dodecyl sulphonate (SDSN) (CSDSN, μmol·L-1) which was used as a surfactant. Accordingly, the Pthollow nanospheres modified glassy carbon (GC) electrode (Pthollow/GC) was prepared. The morphology and composition of Pthollow nanospheres were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) techniques. The electrocatalytic activities of Pthollow/GC and electrodeposited Pt nanoparticles modified glassy carbon electrode (Ptnano/GC) toward methanol oxidation were studied. The results showed that the uniform diameter sizes with well distributions were obtained with the synthesized porous Pthollow nanospheres constructed by Pt atom clusters were . The best electrocatalytic activity toward methanol oxidation was achieved with the Pthollow/GC having a diameter of 130 nm synthesized with CSDSN = 4 μmol·L-1
Graphical Abstract
Keywords
Se template, Pt hollow nanosphere, cyclic voltammetry, current time curves
Publication Date
2014-12-28
Online Available Date
2014-04-15
Revised Date
2014-04-10
Received Date
2014-03-18
Recommended Citation
Xuan LIN, Mei-qin CHENG, Zhong-jin SHANG, Ting XIONG, Xian-tu ZHANG, Wei TIAN, Jian-yun LIN, Qi-ling ZHONG, Bin REN.
Platinum Hollow Nanospheres with Different Sizes: Controllable Synthesis and Electrocatalytic Oxidation toward Methanol[J]. Journal of Electrochemistry,
2014
,
20(6): 571-575.
DOI: 10.13208/j.electrochem.140318
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss6/11
References
[1] Sun Y, Xia Y. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes[J]. Analytical Chemistry, 2002, 74(20): 5297-5305.
[2] Rao G S(饶贵仕), Cheng M Q(程美琴), Zhong Y(钟艳), et al. Preparation of high catalytic platinum hollow nanospheres and their electrocatalytic performance for methanol oxidation[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(10): 2373-2378.
[3] Mayers B, Jiang X C, Sunderland D, et al. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. Journal of the American Chemical Society, 2003, 125(44): 13364-13365.
[4] Mees D R, Pysto W, Tarcha P J. Formation of selenium colloids using sodium ascorbate as the reducing agent[J]. Journal of Colloid and Interface Science, 1995, 170: 254-260.
[5] Guo S J, Dong S J, Wang E K. Spheres with nanochannels: An advanced nanoelectrocatalyst for the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2009, 113(14): 5485-5492.
[6] Cao G Z, Liu D W. Template-based synthesis of nanorod, nanowire, and nanotube arrays[J]. Advances in Colloid and Interface Science, 2008, 136(1/2): 45-64.
[7] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts[J]. Angewandte Chemie-International Edition, 2004, 43(12): 1540-1543.
[8] Wang X C, Tang S D, Liu J, et al. Uniform Fe3O4-PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres[J]. Journal of Nanoparticle Research, 2009, 11(4): 923-929.
[9] Graf C, Blaaderen A. Metallodielectric colloidal core-shell particles for photonic applications[J]. Langmuir, 2002, 18(2): 524-534.
[10] Sun Y G, Xia Y N. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction[J]. Nano Letters, 2003, 3(11): 1569-1572.
[11] Liu L P, Peng Q, Li Y D. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor[J]. Nano Research, 2008, 1(5): 403-411.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons