•  
  •  
 

Corresponding Author

Yong YANG(yyang@xmu.edu.cn)

Abstract

As a cathode material for sodium ion batteries, NaMnPO4/C nanocomposite is successfully synthesized by the combination of spraying drying and high temperature sintering methods. The crystal structure of the as-synthesized phosphate material is confirmed as the natrophilite NaMnPO4, which possesses orthorhombic symmetry and Pmnb space group. It is shown that the precursors are hollow spherical particles and the obtained product consists of micro-scaled secondary particles, which are composed of NaMnPO4 nanocrystallites (tens of nanometres) and amorphous carbon networks. The ionic and electronic conductivities of NaMnPO4 are both effectively enhanced with the help of this nanocomposite structure. In addition, the differences in the Na+-diffusion channel and local structures among the three types of NaMPO4, i.e. olivine, maricite and natrophilite, are also discussed. The electrochemical tests show that the natrophilite NaMnPO4 can deliver the reversible capacity of 90 mAh·g-1 at a current density of 7.75 mA·g-1 when cycled in the voltage range of 1.0-4.5 V (vs. Na+/Na).

Graphical Abstract

Keywords

sodium ion batteries, cathode material, NaMnPO4, spraying drying, electrochemical performance

Publication Date

2014-12-28

Online Available Date

2014-04-28

Revised Date

2014-04-23

Received Date

2014-04-16

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.