•  
  •  
 

Corresponding Author

Jian-ding QIU(jdqiu@ncu.edu.cn)

Abstract

Surface molecularly imprinted magnetic nanoparticles (NPs) were prepared by employing dopamine (DA) as a functional monomer, hemoglobin (Hb) as a template, H2PtCl6 as an oxidant triggered DA polymerization on the surface of the Fe3O4 NPs. The Hb and the formed platinum nanoparticles (PtNPs) were embedded into the polydopamine (PDA). After removal of the Hb, the surface molecularly imprinted magnetic nanoparticles (imprinted Fe3O4/PDA-PtNPs) were formed, and then simply immobilized on the magnetic glassy carbon electrode (imprinted Fe3O4/PDA-PtNPs/MGCE) for Hb sensing. The imprinted Fe3O4/PDA-PtNPs were demonstrated magnetic spherical shape with good solubility in water and narrow size distribution. The PtNPs embedded in the imprinted coating could effectively promote the conductivity and the mechanical strength of imprinted cavity. In addition, the imprinted Fe3O4/PDA-PtNPs/MGCE could selectively recognize Hb and was used to detect Hb in the range of 0.14 ~ 2.7 μg?mL-1 with a detection limit of 0.05 μg?mL-1 (S/N=3).

Graphical Abstract

Keywords

molecularly imprinted polymer, magnetic nanoparticles, dopamine, hemoglobin, electrochemical sensor

Publication Date

2014-12-28

Online Available Date

2014-07-26

Revised Date

2014-07-21

Received Date

2014-06-03

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.