Abstract
Bipolar electrodes (BPEs) are electronic conductors which are usually embedded into microchannels. The potential difference at the BPE/solution interface is obtained by applying a voltage at the two ends of the microchannel. When it reaches a critical value, the redox reaction takes place at both poles of the BPE simultaneously. Compared with other detection methods, the electrochemiluminescence (ECL) platform based on BPE possesses the advantages of concentration enrichment, high sensitivity, low cost, portable sensor system, no need for a light source, which is quite suitable for bioanalysis. This paper reviews the ECL-BPE strategy for bioanalysis and proposes the future research trends.
Graphical Abstract
Keywords
bipolar electrode, electrochemiluminescence, Ru(bpy)32+, biosensor array
Publication Date
2015-02-28
Online Available Date
2014-12-07
Revised Date
2014-12-01
Received Date
2014-11-12
Recommended Citation
Mei-sheng WU, Jing-juan XU, Hong-yuan CHEN.
Electrochemiluminescence Assay Based on Bipolar Electrode for Bioanalysis[J]. Journal of Electrochemistry,
2015
,
21(1): 1-7.
DOI: 10.13208/j.electrochem.140444
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss1/1
References
[1] Jie G, Wang L, Yuan J, et al. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters[J]. Analytical Chemistry, 2011, 83(10): 3873-3880.
[2] Wang J, Shan Y, Zhao W W, et al. Gold nanoparticle enhanced electrochemiluminescence of cds thin films for ultrasensitive thrombin detection[J]. Analytical Chemistry, 2011, 83(11): 4004-4011.
[3] Zhou H, Liu J, Xu J J, et al. Ultrasensitive DNA detection based on Au nanoparticles and isothermal circular double-assisted electrochemiluminescence signal amplification[J]. Chemical Communications, 2011, 47(29): 8358-8360.
[4] Tian C Y, Xu J J, Chen H Y. A novel aptasensor for the detection of adenosine in cancer cells by electrochemiluminescence of nitrogen doped TiO2 nanotubes[J]. Chemical Communications, 2012, 48 (66): 8234-8236.
[5] Wang J, Zhao W W, Li X R, et al. Potassium-doped graphene enhanced electrochemiluminescence of SiO2@CdS nanocomposites for sensitive detection of TATA-binding protein[J]. Chemical Communications, 2012, 48(51): 6429-6431.
[6] He L J, Wu M S, Xu J J, et al. A reusable potassium ion biosensor based on electrochemiluminescence resonance energy transfer[J]. Chemical Communications, 2013, 49(15): 1539-1541.
[7] Li L L, ChenY, Lu Q, et al. Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods[J]. Scientific Reports, 2013, 3: 1529.
[8] Zhang H R, Xu J J & Chen H Y. Electrochemiluminescence ratiometry: A new approach to DNA biosensing[J]. Analytical Chemistry2013, 85(11): 5321-5325.
[9] Chow K F, Mavre? F O, Crooks R M. Wireless electrochemical DNA microarray sensor[J]. Journal of the American Chemical Society, 2008, 130(24): 7544-7545.
[10] Chang B Y, Chow K F, Crooks J A, et al. Two-channel microelectrochemical bipolar electrode sensor array[J]. Analyst, 2012, 137(12): 2827-2833.
[11] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[12] Zhan W, Alvarez J, Crooks R M. Electrochemical sensing in microfluldic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. Journal of the American Chemical Society, 2002, 124(44): 13265-13270.
[13] Zhang X, Chen C, Li J, et al. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform[J]. Analytical Chemistry, 2013, 85(11): 5335-5339.
[14] Wu S Z, Zhou Z Y, Xu L R, et al. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis[J]. Biosensors & Bioelectronics, 2014, 53: 148-153.
[15] Zhang X W, Li J, Jia X F, et al. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system[J]. Analytical Chemistry, 2014, 86(11): 5595-5599.
[16] Shi H W, Wu M S, Du Y, et al. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells[J]. Biosensors & Bioelectronics, 2014, 55: 459-463.
[17] Wu M S, Yuan D J, Xu J J, et al. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection[J]. Analytical Chemistry, 2013, 85(24): 11960-11965.
[18] Wu M S, Xu B Y, Shi H W, et al. Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode[J]. Lab on A Chip, 2011, 11(16): 2720-2724.
[19] Wu M S, Qian G S, Xu J J, et al. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode[J]. Analytical Chemistry, 2012, 84(12): 5407-5414.
[20] Lin X M, Zheng L Y, Gao G M, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells[J]. Analytical Chemistry, 2012, 84(18): 7700-7707.
[21] Miao W, Choi J P & Bard A J. Electrogenerated chemiluminescence 69: The Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited a new route involving TPrA?+ cation radicals[J]. Journal of the American Chemical Society, 2002, 124(48): 14478-14485.
[22] Feng Q M, Pan J, Zhang H R, et al. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of cancer biomarker[J]. Chemical Communications, 2014, 50(75): 10949-10951.
[23] Arora A, Eijkel J, Morf W E, et al. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device[J]. Analytical Chemistry, 2001, 73(14): 3282-3288.
[24] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[25] Wang T, Fan S, Erdmann R, et al. Detection of ferrocenemethanol and molecular oxygen based on electrogenerated chemiluminescence quenching at a bipolar electrode[J]. Langmuir, 2013, 29(51): 16040-16044.
[26] Chow K F, Mavre F, Crooks J A, et al. A large-scale, wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society, 2009, 131(24): 8364-8365.
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons