•  
  •  
 

Corresponding Author

Pei-kang SHEN(pkshen@gxu.edu.cn)

Abstract

Ferric oxide (Fe2O3) as a promising anode material for lithium ion battery is due to its high theoretical capacity (1007 mAh·g-1), earth abundance and low cost. The nanosized Fe2O3 on the three dimensional hierarchical porous graphene-like network (denoted as Fe2O3-3D HPG) has been synthesized by homogeneous precipitation and heat treatment. The 3D HPG can provide a highly conductive structure in conjunction to support well contacted Fe2O3 nanoparticles, and effectively enhance the mechanical strength of the matrices during volume changes, as well as improve the utilization rate of Fe2O3 and suppress the aggregation of Fe2O3 nanoparticles during Li ion insertion/extraction. As a result, the first discharge capacity of Fe2O3-3D HPG was up to 1745 mAh·g-1 at 50 mA·g-1, and after 50 cycles, the retention of the capacity was 1095 mAh·g-1.

Graphical Abstract

Keywords

Fe2O3, anode materials, Li ion batteries, three dimensional hierarchical porous graphene-like matrix, electrochemistry

Publication Date

2015-02-28

Online Available Date

2014-11-18

Revised Date

2014-11-13

Received Date

2014-09-12

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.