Abstract
Electrodeposition of aluminium-magnesium alloys have been carried out onto platinum and copper cathodes from Lewis acidic aluminium(III) chloride-1-ethyl-3-methylimidazolium chloride ionic liquid containing magnesium(II) chloride by constant current and constant potential methods at room temperature. Magnesium content in the deposited alloy increases with increasing MgCl2 concentration in the ionic liquid and with increasing cathodic current density. The influences of various experimental conditions on electrodeposition and the morphology of the electrodeposited layers have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDAX). On increasing the deposition current densities the dense, bright, adherent and smooth electrodeposited layers are obtained. The cathodic current efficiency for the deposition of Al-Mg alloys is about 99%. The electrochemical quartz crystal microbalance (EQCM) has been used to study alloy deposition. The composition of the metal co-deposit has been calculated from the slopes of the mass-charge (m-Q) plots of gravimetric acoustic impedance analysis.
Graphical Abstract
Keywords
electrodeposition, Al-Mg alloys, ionic liquids, cyclic voltammetry, constant potential
Publication Date
2015-04-28
Online Available Date
2015-04-23
Revised Date
2014-07-28
Received Date
2014-06-03
Recommended Citation
RostomAli M., P. Abbott Andrew, S. Ryder Karl.
Electrodeposition of Al-Mg Alloys from Acidic AlCl3-Emic-MgCl2 Room Temperature Ionic Liquids[J]. Journal of Electrochemistry,
2015
,
21(2): 172-180.
DOI: 10.13208/j.electrochem.140603
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss2/11
References
[1] Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys[J]. Journal of the Electrochemical Society, 1990, 137(2): 414-421.
[2] Song G, Atrens A, John D St, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, 39(10/11): 1981-2004.
[3] Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42(8): 1433-1455.
[4] Kautek W, Birkle S. Aluminum-electrocrystallization from metal-organic electrolytes[J]. Electrochimica Acta, 1989, 34(8): 1213-1218.
[5] Zhao Y, Vander Noot T J. Electrodeposition of aluminum from room temperature AlCl3-TMPAC molten salts[J]. Electrochimica Acta, 1997, 42(11): 1639-1643.
[6] Melton T J, Joyce J, Maloy J T, et al. Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts[J]. Journal of the Electrochemical Society, 1990, 137(12): 3865-3869.
[7] Carlin R T, Osteryoung R A. Aluminum anodization in a basic ambient temperature molten salt[J]. Journal of the Electrochemical Society, 1989, 136(5): 1409-1415.
[8] Moffat T P. Electrodeposition of Ni1-xAlx in a chloroaluminate melt[J]. Journal of the Electrochemical Society, 1994, 141(11): 3059-3070.
[9] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Co-Al alloys of different composition from the AlCl3-BPC-CoCl2 room temperature molten salt[J]. Electrochimica Acta, 1997, 42(12): 18191828.
[10] Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta, 1997, 42(15): 2347-2354.
[11] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Journal of Electroanalytical Chemistry, 2001, 513(2): 111-118.
[12] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ti alloys from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Indian Journal of Chemical Technology, 2003, 10(1): 14-20.
[13] Stafford G R. The electrodeposition of Al3Ti from chloroaluminate electrolytes[J]. Journal of the Electrochemical Society, 1994, 114(4): 945-953.
[14] Tsuda T, Hussay C L, Stafford G R. Eectrodeposition of Al-Mo alloys from the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Journal of the Electrochemical Society, 2004, 151(6): C379-C384.
[15] Stafford G R. The electrodeposition of an aluminum-manganese metallic glass from molten salts[J]. Journal of the Electrochemical Society, 1989, 136(3): 635-639.
[16] Endres F, Bukowsk M, Hempelmann R, Natter H. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie International Edition, 2003, 42(29): 3428-3430.
[17] Tsuda T, Hussay C L, Stafford G R, et al. Electrodeposition of Al-Zr alloys from lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 2004, 151(7): C447-C454.
[18] Lai P K, Kazacos M S. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride[J]. Journal of Electroanalytical Chemistry, 1988, 248(2): 431-440.
[19] Hussey C L, Laher T M. Elcetrochemical and spectroscopic studies of cobalt(II) in molten aluminum chloride-N-n-butylpyridinium chloride[J]. Inorganic Chemistry, 1981, 20: 4201-4206.
[20] Hussey C L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry[J]. Pure & Applied Chemistry, 1988, 60(12): 1763-1772.
[21] Abdul-sada A L, Greenway A M, Seddon K R, et al. Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3]-, in acidic ambient-temperature ionic liquids[J]. Organic Mass Spectrometry, 1992, 27(5): 648-649.
[22] Morimitsu M, Tanaka N, Matsunaga M. Induced codeposition of Al-Mg alloys in lewis acidic AlCl3-EMIC room temperature molten salts[J]. Chemistry Letters, 2000, 29(9): 1028-1029.
[23] Pitner W R, Hussey C L, Stafford G R. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt[J]. Journal of the Electrochemical Society, 1996, 143(1): 130-138.
[24] Abbott A P, Qiu F, Abood H M A, et al. Double layer, diluents and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1862-1872.
[25] Barron J C. Zn and its alloy electrodeposition from deep eutectic solvents[D]. University of Leicester, UK, 2009.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons