•  
  •  
 

Corresponding Author

Qun-jie XU(xuqunjie@shiep.edu.cn)

Abstract

With rapid development of new energy industry like electric vehicles and energy storage station, these fields highly demand the next generation of high performance Li-ion battery systems with stronger energy density, higher power density, and longer cycling life. Lithium-rich Mn-based cathode materials, xLi2MnO3·(1-x)LiMO2(M=Mn, Co, Ni...), have become the hot topic and drawn attentions of scholars worldwide because of their high reversible capacity exceeding 240 mAh·g-1, excellent electrochemical properties, and low cost, which makes them most promising cathode material candidates for next Li-ion battery system. The cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 prepared in our laboratory shows high initial discharge capacity of 277.3 mAh·g-1 with retention of 98.4% after 50 cycles. Based on our previous works, we have introduced and reviewed the structures, preparation methods, and charge/discharge mechanisms of these lithium-rich Mn-based cathode materials xLi2MnO3·(1-x)LiMO2.

Graphical Abstract

Keywords

Li-ion battery, lithium-rich cathode materials, co-precipitation method, xLi2MnO3·(1-x)LiMO2

Publication Date

2015-04-28

Online Available Date

2014-12-31

Revised Date

2014-12-18

Received Date

2014-10-24

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.