•  
  •  
 

Corresponding Author

Wang-jun CUI(wjcui@xmu.edu.cn);
Jin-bao ZHAO(jbzhao@xmu.edu.cn)

Abstract

A method to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 for high voltage lithium-ion battery by CoAl2O4 coating was present in this work. The effects of CoAl2O4 coatings on the structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were investigated in detail. The results show that CoAl2O4 forms a thin layer of 8 nm on the surface of LiNi1/3Co1/3Mn1/3O2 without destroying the structure of the core material. The CoAl2O4-coated LiNi1/3Co1/3Mn1/3O2 possesses better rate capability and cycle performance than the uncoated sample. The excellent cycling performance can be obtained even with 1% (by mass) CoAl2O4 coating, for example, the capacity retentions at the 100th cycle increase from 74.4% to 93.7% at room temperature, and 17.7% to 77% at 55 °C, respectively. It was also confirmed that the CoAl2O4 coating could depress Mn ions dissolving into the electrolyte, and could lead to the enhancement in the structural stability and the thermal stability of LiNi1/3Co1/3Mn1/3O2, suggesting that the CoAl2O4 coating is an efficient way to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2.

Graphical Abstract

Keywords

lithium-ion battery, LiNi1/3Co1/3Mn1/3O2, electrochemical performance, CoAl2O4 coating

Publication Date

2015-04-28

Online Available Date

2014-12-31

Revised Date

2014-12-22

Received Date

2014-10-26

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.