Abstract
The carbon nanotubes/vanadium oxides (CNTs/V2O5) hollow microspheres (VOC) were prepared via solvothermal process. The effects of the ratio for CNTs to V2O5 on the morphologies, structures and electrochemical performances were systemically investigated. The results indicate that CNTs dramatically enhanced the rate performances of VOC composite electrodes. When the ratio of CNTs is 7.1%, the VOC composite electrode exhibited the best electrochemical performance, which delivered a specific capacitance of 346 F·g-1 at 0.5 A·g-1 and maintained 75% at 8 A·g-1 in 5 mol L-1 LiNO3. A hybrid capacitor was assembly using commercial activated carbon as the negative electrode and VOC as the positive electrode. The hybrid capacitor exhibited an energy density of 12.6 Wh·kg-1 and power density of 700 W·kg-1.
Graphical Abstract
Keywords
solvothermal process, V2O5, CNTs, hybrid capacitor
Publication Date
2015-04-28
Online Available Date
2015-01-05
Revised Date
2014-12-22
Received Date
2014-10-31
Recommended Citation
Liang HAO, Lai-fa SHEN, Jie WANG, Jia-jia ZHU, Xiao-chen ZHAO, Xiao-gang ZHANG.
Synthesis and Electrochemical Properties of CNTs/V2O5 Hollow Microspheres[J]. Journal of Electrochemistry,
2015
,
21(2): 152-156.
DOI: 10.13208/j.electrochem.141044
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss2/7
References
[1] Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitor[J]. Journal of Power Sources, 1997, 66(1/2): 1-14.
[2] Pell W G, Conway B E, Adams W A, et al. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications[J]. Journal of Power Sources, 1999, 80(1/2): 134-141.
[3] Conway B E. Electrochemical supercapacitors[M]. New York: Kluwer Academic/Plenum Publishers, 1999.
[4] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Natural Materials, 2008, 7(11): 845-854.
[5] Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance[J]. Energy & Environmental Science, 2010, 3(9): 1238-1251.
[6] Miller J R. Electrochemical capacitor thermal management issues at high-rate cycling[J]. Electrochimica Acta, 2006, 52(4): 1703-1708.
[7] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[8] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal the Electrochemical Society, 1995, 142(8): 2699-2703.
[9] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters, 2006, 6(12): 2690-2695.
[10] Yuan C Z, Chen L, Gao B, et al. Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors[J]. Journal of Materials Chemistry, 2008, 19(2): 246-252.
[11] Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors[J]. Electrochimica Acta, 2008, 53(8): 3296-3304.
[12] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. Journal the Electrochemical Society, 1996, 143(1): 124-130.
[13] Yuan C Z, Zhang X G, Su L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors[J]. Journal of Materials Chemistry, 2009, 19(32): 5772-5777.
[14] Lu Z Y, Zheng C, Liu J F, et al. Stable ultrahigh specific capacitance of NiO nanorod arrays[J]. Nano Research, 2011, 4(7): 658-665.
[15] Xia X H, Tu J P, Wang X L, et al. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material[J]. Chemical Communications, 2011, 47(20): 5786-5788.
[16] Zhang F, Yuan C Z, Zhu J J, et al. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors[J]. Advanced Functional Materials, 2013, 23(31): 3909-3915.
[17] Xu C L, Zhao Y Q, Yang G W, et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications[J]. Chemical Communications, 2009, 48: 7575-7577.
[18] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. Journal of Physical Chemistry C, 2010, 114(1): 658-663.
[19] Cao Z Y, Wei B Q. V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries[J]. Nano Energy, 2013, 2(4): 481-490.
[20] Pan A Q, Wu H B, Zhang L, et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy & Environmental Science, 2013, 6(5): 1476-1479.
[21] Su D W and Wang G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries[J]. ACS Nano, 2013, 7(12): 11218-11226.
[22] Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition[J]. Nano Letters, 2014, 14(7): 4119-4124.
[23] Kuwabata S, Masui S, Tomiyori H, et al. Charge-discharge properties of chemically prepared composites of V2O5 and polypyrrole as positive electrode materials in rechargeable Li batteries[J]. Electrochimica Acta, 2000, 46(1): 91-97.
[24] Delmas C, Auradou H C, Cocciantelli J M, et al. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation[J]. Solid State Ionics, 1994, 69(3/4): 257-64.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons