•  
  •  
 

Corresponding Author

Xin-bo ZHANG(xbzhang@ciac.ac.cn)

Abstract

In this paper, a high specific surface area of porous Co3O4 hollow nanospheres was successfully synthesized via hydrothermal carbonization at 140 oC, followed by calcination using cobalt nitrate hexahydrate (Co(NO3)2·6H2O), hexamethylenetetramine (HMT), sucrose, and sodium citrate (Na3C6H5O7). The porous Co3O4 hollow nanospheres consisted of nanoparticles with high specific surface area of mesoporous structure, and could provide active reaction sites for OER and ORR. When used as lithium-air battery cathode catalyst, the Co3O4/Super P (SP) electrode exhibited excellent cycle performance, resulting in high capacity and long life of lithium-air batteries.

Graphical Abstract

Keywords

Co3O4 hollow spheres, lithium-air batteries, long life, hydrothermal

Publication Date

2015-04-28

Online Available Date

2015-04-23

Revised Date

2015-02-01

Received Date

2014-11-03

References

[1] Abraham K M. A brief history of non-aqueous metal-air batteries[J]. ECS Transactions, 2008, 3(42): 67-71.
[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652- 657.
[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29.
[4] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries[J]. Journal of the Electrochemical Society, 2011, 159(2): R1-R30.
[5] Zhang L L, Zhang X B, Wang Z L, et al. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous Lithium-oxygen batteries[J]. Chemical Communications, 2012, 48(61): 7598-7600.
[6] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 125(1): 410-414.
[7] Gao J, Wu W, Tian Y Y, et al. The electrocatalytic study of LiCoO2 in air electrode[J]. Journal of Electrochemistry, 2012, 18(1): 14-17.
[8] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.
[9] Dong S, Chen X, Zhang K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries[J]. Chemical Communications, 2011, 47(40): 11291-11293.
[10] Chen Y, Freunberger S A, Peng Z, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature chemistry, 2013, 5(6): 489-494.
[11] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[12] Jian Z, Liu P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 Batteries[J]. Angewandte Chemie International Edition, 2014, 53(2): 442-446.
[13] Lu Y C, Xu Z, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[14] Wang Z L, Xu D, Xu J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.
[15] Cui Y, Wen Z, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897.
[16] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.
[17] Débart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[18] Garsuch R R, Le D B, Garsuch A, et al. Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2008, 155(10): A721-A724.
[19] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.
[20] Shui J L, Okasinski J S, Kenesei P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature communications, 2013, 4: 2255.
[21] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.
[22] Yilmaz E, Yogi C, Yamanaka K, et al. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles[J]. Nano letters, 2013, 13(10): 4679-4684.
[23] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.