Abstract
In this paper, a high specific surface area of porous Co3O4 hollow nanospheres was successfully synthesized via hydrothermal carbonization at 140 oC, followed by calcination using cobalt nitrate hexahydrate (Co(NO3)2·6H2O), hexamethylenetetramine (HMT), sucrose, and sodium citrate (Na3C6H5O7). The porous Co3O4 hollow nanospheres consisted of nanoparticles with high specific surface area of mesoporous structure, and could provide active reaction sites for OER and ORR. When used as lithium-air battery cathode catalyst, the Co3O4/Super P (SP) electrode exhibited excellent cycle performance, resulting in high capacity and long life of lithium-air batteries.
Graphical Abstract
Keywords
Co3O4 hollow spheres, lithium-air batteries, long life, hydrothermal
Publication Date
2015-04-28
Online Available Date
2015-04-23
Revised Date
2015-02-01
Received Date
2014-11-03
Recommended Citation
Tong LIU, Na LI, Qing-chao LIU, Xin-bo ZHANG.
Porous Co3O4 Hollow Nanospheres Cathode Catalyst for High-capacity and Long-cycle Li-Air Batteries[J]. Journal of Electrochemistry,
2015
,
21(2): 157-161.
DOI: 10.13208/j.electrochem.141049
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss2/8
References
[1] Abraham K M. A brief history of non-aqueous metal-air batteries[J]. ECS Transactions, 2008, 3(42): 67-71.
[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652- 657.
[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29.
[4] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries[J]. Journal of the Electrochemical Society, 2011, 159(2): R1-R30.
[5] Zhang L L, Zhang X B, Wang Z L, et al. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous Lithium-oxygen batteries[J]. Chemical Communications, 2012, 48(61): 7598-7600.
[6] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 125(1): 410-414.
[7] Gao J, Wu W, Tian Y Y, et al. The electrocatalytic study of LiCoO2 in air electrode[J]. Journal of Electrochemistry, 2012, 18(1): 14-17.
[8] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.
[9] Dong S, Chen X, Zhang K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries[J]. Chemical Communications, 2011, 47(40): 11291-11293.
[10] Chen Y, Freunberger S A, Peng Z, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature chemistry, 2013, 5(6): 489-494.
[11] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[12] Jian Z, Liu P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 Batteries[J]. Angewandte Chemie International Edition, 2014, 53(2): 442-446.
[13] Lu Y C, Xu Z, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[14] Wang Z L, Xu D, Xu J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.
[15] Cui Y, Wen Z, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897.
[16] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.
[17] Débart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[18] Garsuch R R, Le D B, Garsuch A, et al. Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2008, 155(10): A721-A724.
[19] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.
[20] Shui J L, Okasinski J S, Kenesei P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature communications, 2013, 4: 2255.
[21] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.
[22] Yilmaz E, Yogi C, Yamanaka K, et al. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles[J]. Nano letters, 2013, 13(10): 4679-4684.
[23] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons