Abstract
Olivine-structured lithium manganese phosphate (LiMnPO4) has the following advantages: excellent thermal stability, low cost, high safety and environmental benignity. Importantly, the theoretical energy density of LiMnPO4 is about 20% higher than that of commercialized LiFePO4 due to its higher Li+ intercalation potential of 4.1 V (vs. Li+/Li). Moreover, the high operating voltage of LiMnPO4 is compatible with present non-aqueous organic electrolytes of lithium-ion batteries. Therefore, LiMnPO4 is considered as a next generation cathode material for lithium-ion batteries. However, LiMnPO4 suffers from poor electronic conductivity and low lithium diffusivity, resulting in its low discharge capacity and poor rate capability. And these intrinsic disadvantages hinder LiMnPO4 from its practical applications in lithium-ion batteries. In this paper, recent researches in the modifications including carbon coating, ion doping, nanoization and cyrstalline morphological controlling, full cells, patent situation and commercial progress are reviewed. The prospects of its future development are also predicted. Particularly, the experimental data by Advanced Li-ion Battery Engineering Lab fully proves that LiMnPO4 has the feasibility of applying in lithium batteries of HEVs or EVs. LiMnPO4 composite such as LiMnPO4/ternary cathode materials could be most likely to be realized in the near future.
Graphical Abstract
Keywords
lithium-ion batteries, high-energy density, lithium manganese phosphate, cathode material
Publication Date
2015-06-28
Online Available Date
2015-06-28
Revised Date
2015-03-17
Received Date
2014-11-18
Recommended Citation
Lai-fen QIN, Yong-gao XIA, Li-peng CHEN, Hua-sheng HU, Feng XIAO, Zhao-ping LIU.
Research Status and Application Prospects of LiMnPO4 as A New Generation Cathode Material for Lithium-ion Batteries[J]. Journal of Electrochemistry,
2015
,
21(3): 253-267.
DOI: 10.13208/j.electrochem.141048
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss3/6
References
[1]Pivko M, Bele M, Tchernychova E, et al. Synthesis of nanometric LiMnPO4 via a two-step technique[J]. Chemistry of Materials, 2012, 24(6): 1041-1047.
[2]Doh C H, Kim D H, Kim H S, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test[J]. Journal of Power Sources, 2008, 175(2): 881-885.
[3]Liu Y J, Li X H, Guo H J, et al. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature[J]. Journal of Power Sources, 2009, 189(1): 721-725.
[4]Doi T, Inaba M, Tsuchiya H, et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures[J]. Journal of Power Sources, 2008, 180(1): 539-545.
[5]Mateyshina Yu G, Lafont U, Uvarov N F, et al. Physical and electrochemical properties of LiFe0.5Mn1.5O4 spinel synthesized by different methods[J]. Russion Journal of Electrochemistry, 2009, 45(5): 602-605.
[6]Yabuuchi N, Makimura Y, Ohzuku T. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-Ion batteries[J]. Journal of Electrochemical Society, 2007, 154(4): A314-A321.
[7]Wang X M(王希敏), Wang X Y(王先友), Luo X F(罗旭芳), et al. LiCo1/3Ni1/3Mn1/3O2 as cathode materials of lithium-ion battery[J]. Progress in Chemistry(化学进展), 2006, 18(2):1720-1724.
[8]Aravindan V, Gnanaraj J, Lee Y S, et al. LiMnPO4—A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539.
[9]Zhou F, Cococcioni M, Kang K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11): 1144-1148.
[10]Zhou F, Kang K, Maxisch T, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4[J]. Solid State Communications, 2004, 132(3/4): 181-186.
[11]Shang S L, Wang Y, Mei Z G, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): A comparative first-principles study[J]. Journal of Materials Chemistry, 2012, 22(3): 1142-1149.
[12]Chen J J, Vacchio M J, Wang S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693.
[13]Yonemura M, Yamada A, Kanno R, et al. Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn) [J]. Journal of The Electrochemical Society, 2004, 151(9): A1352-A1356.
[14]Wan Y(万洋), Zheng Q J(郑荞佶), Lin D M(赁敦敏). Recent development of LiMnPO4 as cathode materials of lithium-ion batteries[J]. Acta Chimica Sinica (化学学报), 2014, 72(5): 537-551.
[15]Fisher C, Prieto V, Islam M. Lithium battery materials LiMPO4(M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior[J]. Chemistry of Materials, 2008, 20(18): 5907-5915.
[16]Gardiner G, Islam M. Anti-Site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248.
[17]Islam M, Driscoll D, Fisher C, et al. Atomic-Scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material[J]. Chemistry of Materials, 2005, 17(20): 5085-5092.
[18]Chen J, Vacchio M, Wang S, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693.
[19]Whittingham M, Yanning S, Lutta S, et al. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries[J]. Journal of Materials Chemistry, 2005, 15(33): 3362-3379.
[20]Dong Y Z, Wang L, Zhang S L, et al. Two-phase interface in LiMnPO4 nanoplates[J]. Journal of Power Sources, 2012, 215: 116-121.
[21]Yamada A, Hosoya M, Chung S, et al. Olivine-type cathodes achievements and problems[J]. Journal of Power Sources, 2003, 119-121: 232-238.
[22]Delacourt C, Laffont L, Bouchet R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials[J]. Journal of The Electrochemical Society, 2005, 152(5): A913-A921.
[23]Yi H H(易惠华), Wu H X(吴海霞), Dai Y N(戴永年), et al. Research progresses on the improvement of the electrochemical performance of LiMnPO4 as cathode for rechargeable lithium ion battery[J]. Journal of Synthetic Crystals(人工晶体学报), 2012, 41: 295-300.
[24]Li S(李珊珊), Su Z(粟智), Zhang Y(张艳慧). Progress on LiMnPO4 positive materials for lithium-ion batteries[J]. Chinese Journal of Spectroscopy Laboratory(光谱实验室), 2012, 29(6): 3822-3829.
[25]Li G, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A135-A137.
[26]Oh S, Sun Y. Improving the electrochemical performance of LiMn0.85Fe0.15PO4-LiFePO4 core-shell materials based on an investigation of carbon source effect[J]. Journal of Power Sources, 2013, 244: 663-667.
[27]Zaghib K, Trudeau M, Guerfi A, et al. New advanced cathode material: LiMnPO4 encapsulated with LiFePO4[J]. Journal of Power Sources, 2012, 204: 177-181.
[28]Oh S, Oh S, Yoon C, et al. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J]. Advanced Functional Materials, 2010, 20(19): 3260-3265.
[29]Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique[J]. Journal of Power Sources, 2006, 153(2): 274-280.
[30]Wang Y R, Yang Y F, Yang Y B, et al. Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method[J]. Solid State Communications, 2010, 150(1/2): 81-85.
[31]Wang Y, Yang Y, Yang Y, et al. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process[J]. Materials Research Bulletin, 2009, 44(11): 2139-2142.
[32]Murugan A V, Muraliganth T, Manthiram A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes[J]. Journal of The Electrochemical Society, 2009, 156(2): A79-A83.
[33]Mizuno Y, Kotobuki M, Munakata H, et al. Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode[J]. Journal of the Ceramic Society of Japan, 2009, 117(11): 1225-1228.
[34]Wang H L, Yang Y, Liang Y Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie-International Edition, 2011, 50(32): 7364-7368.
[35]Qin Z H, Zhou X F, Xia Y G, et al. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(39): 21144-21153.
[36]Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chemical Communications, 2012, 48(9): 1201-1217.
[37]Clemens O, Haberkorn R, Springborg M, et al. On aliovalent substitution on the Li site in LiMPO4: An X-ray diffraction study of the systems LiMPO4-M1.5PO4(= LixM1.5-x/2PO4; M = Ni, Co, Fe, Mn)[J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2014, 640(1): 173-183.
[38]Hu C L, Yi H H, Wang F X, et al. Boron doping at P-site to improve electrochemical performance of LiMnPO4 as cathode for lithium ion battery[J]. Journal of Power Sources, 2014, 255: 355-359.
[39]Wang D, Ouyang C, Drézen T, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. Journal of The Electrochemical Society, 2010, 157(2): A225-A229.
[40]Hong J, Wang F, Graetz J, et al. LiFexMn1-xPO4: A cathode for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 3659-3663.
[41]Fang H S, Yi H H, Hu C L, et al. Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 71: 266-269..
[42]Shiratsuchi T, Okada S, Doi T, et al. Cathodic performance of LiMn1-xMxPO4 (M=Ti, Mg and Zr) annealed in an inert atmosphere[J]. Electrochimica Acta, 2009, 54: 3145-3151.
[43]Lee J, Park M, Anass B, et al. Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution[J]. Electrochimica Acta, 2010, 55: 4162-4169.
[44]Yang G, Ni H, Liu H D, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd)[J]. Journal of Power Sources, 2011, 196: 4747-4755.
[45]Qin L F, Xia Y G, Cao H L, et al. Effects of Ti additive on the structure and electrochemical performance of LiMnPO4 cathode material[J]. Electrochimica Acta, 2014, 123: 240-247.
[46]Martha S, Grinblat J, Haik O, et al. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2009, 48(45): 8559-8563.
[47]Sun Y, Oh S, Park H, et al. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries[J]. Advanced Materials, 2011, 23(43): 5050-5054.
[48]Hu L J, Qiu B, Xia Y G, et al. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 246-252.
[49]Wang L, Zhang L W, Li J J, et al. First-principles study of doping in LiMnPO4[J]. International Journal of Electrochemical Science, 2012, 7(4): 3362-3370.
[50]Qin L F, Xia Y G, Qiu B, et al. Synthesis and electrochemical performances of (1-x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2013, 239: 144-150.
[51]Gutierrez A, Qiao R, Wang L, et al. High-capacity, aliovalently doped olivine LiMn1-3 x/2Vx?x/2PO4 cathodes without carbon coating[J]. Chemistry of Materials, 2014, 26(9): 3018-3026.
[52]Delacourt C, Poizot P, Morcrette M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders[J]. Chemistry of Materials, 2004, 16(1): 93-99.
[53]Drezen T, Kwon N, Bowen P, et al. Effect of particle size on LiMnPO4 cathodes[J]. Journal of Power Sources, 2007, 174: 949-953.
[54]Kang B, Ceder G. Electrochemical performance of LiMnPO4 synthesized with off-stoichiometry[J]. Journal of The Electrochemical Society, 2010, 157(7): A808-A811.
[55]Rangappa D, Sone K, Zhou Y, et al. Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties[J]. Journal of Materials Chemistry, 2011, 21(39): 15813-15818.
[56]Zhao M, Fu Y, Xu N, et al. High performance LiMnPO4/C prepared by a crystallite size control method[J]. Journal of Materials Chemistry A, 2014, 2(36): 15070-15077.
[57]Ji H M, Yang G, Ni H, et al. General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route[J]. Electrochimica Acta, 2011, 56(9): 3093-3100.
[58]Guo H, Wu C Y, Xie J, et al. Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process[J]. Journal of Materials Chemistry A, 2014, 2(27): 10581-10588.
[59]Pieczonka N, Liu Z, Huq A, et al. Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction method s for Li-ion batteries[J]. Journal of Power Sources, 2013, 230: 122-129.
[60]Choi D, Wang D, Bae I, et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J]. Nano Letters, 2010, 10(8): 2799-2805.
[61]Dinh H C, Mho S I, Kang Y, et al. Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes[J]. Journal of Power Sources, 2013, 244: 189-195.
[62]Ran L B, Liu X Y, Tang Q W, et al. Grinding aid-assisted preparation of high-performance carbon-LiMnPO4[J]. Electrochimica Acta, 2013, 114: 14-20.
[63]Kwon N H, Fromm K M. Enhanced electrochemical performance of < 30 nm thin LiMnPO4 nanorods with a reduced amount of carbon as a cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 69: 38-44.
[64]Yamada A, Nishimura S, Koizumi H, et al. Intemediate phases in LixFePO4[J]. Solid State Ionics, 2006, 972: 257-264.
[65]Amin R, Balaya P, Maier J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J]. Electrochemical and Solid-State Letters, 2007, 10(1): A13-A16.
[66]Wang D, Buqa H, Crouzet M, et al. High-performance, nano-structured LiMnPO4 synthesized via a polyol method[J]. Journal of Power Sources, 2009, 189: 624-628.
[67]Rui X H, Zhao X X, Lu Z Y, et al. Olivine-type nanosheets for lithium ion battery cathodes[J]. ACS Nano, 2013, 7(6): 5637-5646.
[68]Barpanda P, Djellab K, Recham N, et al. Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 10143-10152.
[69]Su J, Wei B Q, Rong J P, et al. A general solution-chemistry route to the synthesis LiMPO4 (M = Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries[J]. Journal of Solid State Chemistry, 2011, 184: 2909-2919.
[70]Wang F, Yang J, Gao P F, et al. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance[J]. Journal of Power Sources, 2011, 196(23): 10258-10262.
[71]Guo B B, Ruan H C, Zheng C, et al. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries[J]. Scientific Reports, 2013, 3: 2788-2793.
[72]Zou Q Q, Zhu G N, Xia Y Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode[J]. Journal of Power Sources, 2012, 206: 222-229.
[73]Martha S K, Haik O, Borgel V, et al. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application[J]. Journal of The Electrochemical Society, 2011, 158(7): A790-A797.
[74]Jia X P(贾旭平). The development prospects of lithium ion battery materials[J]. Chinese Journal of Power Sources(电源技术), 2014, 138(5): 803-804.
[75]Barker J, Saidi M, Saidi M Y, et al. Novel lithium-containing phosphate for use in lithium batteries - where intercalation and de-intercalation of lithium ions takes place at the lithium-containing phosphate electrode during the charge and discharge cycle: US, 5871866[P]. 2004-05-06.
[76]Goodenough J B, Padhi A, Nanjundaswamy K S, et al. Cathode materials for rechargeable secondary lithium batteries - comprising transition metal compounds with ordered olivine or rhombohedral NASICON structure containing phosphate ions: US, 5910382[P]. 2010-03-11.
[77]Li G, Yamada A, Li G H. Positive electrode active material for non-aqueous electrolyte cell contains manganese-based phosphoric compound having particular proportion of manganese: JP, 2001307732[P]. 2010-01-07.
[78]Li G. Positive electrode material and cell comprising the same: JP, 2002151072[P]. 2010-05-05.
[79]Goto S. Manufacture of positive electrode active material for non-aqueous electrolyte battery, involves mixing lithium phosphate, manganous phosphate and phosphates containing specific metals, and baking mixture at specific temperature: JP, 2004063270-A[P]. 2004-02-26.
[80]Goto S. Anode active material for anode used in non-aqueous electrolyte battery, contains specific compound having olivine structure: JP, 2004063422-A[P]. 2004-02-26.
[81]Yoshida J, Jyun Y, Jun Y. Positive electrode active material with olivine structure, for use in lithium secondary battery, comprises lithium (sodium, potassium or rubidium) manganese phosphate with larger inter-layer interval of manganese oxide layers: JP, 2009104970[P]. 2009-05-14.
[82]Isono M, Drezen T, Exnar I, et al. Manufacture of lithium manganese phosphate involves obtaining added dispersion solution, adjusting pH of added dispersion solution, and synthesizing by reacting pH-adjusted dispersion solution by heating under pressure condition: JP, 2007119304[P]. 2007-05-17.
[83]Suzuki H, Otsuki K, Hirano M, et al. Active material, useful in lithium-ion secondary battery and as an electrode material for electrochemical devices e.g. metallic lithium secondary batteries and electrochemical capacitor, comprises crystallite of lithium manganese phosphate: JP, 2011009190-A[P]. 2010-12-02.
[84]Kawamoto M, Tabuchi T, Inamasu N, et al. Active material used for positive electrode of lithium secondary battery for e.g. mobile telephone, comprises lithium-manganese phosphate in which portion of manganese contains cobalt-substituted compound in below specified amount: JP, 2010287450-A[P]. 2010-12-24.
[85]Kono K, Toyama T. Positive electrode active material for lithium ion secondary battery, comprises lithium manganese phosphate aggregate containing secondary particles formed by adhering primary particles on lithium manganese phosphate: JP, 2010073520-A[P]. 2010-04-02.
[86]Hieda H, Kihara N, Yanagita Y. Positive electrode active material for lithium ion secondary battery, comprises lithium manganese phosphate aggregate containing secondary particles formed by adhering primary particles on lithium manganese phosphate: JP, 2006318607-A[P]. 2006-11-24.
[87]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏), et al. A lithium manganese phosphate cathode material and its preparation method: CN, 201110271031.7[P]. 2012-09-26.
[88]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏). A lithium ion battery cathode material, its preparation method, and lithium ion batteries: CN, 201210383549.4[P]. 2013-01-02
[89]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏). A preparation method of lithium ion battery cathode material: CN, 201210134119.9[P]. 2012-09-12.
[90]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). Lithium ion battery cathode material and its preparation method: CN, 201210551815.X[P]. 2013-03-20.
[91]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). A lithium manganese phosphate cathode material and its preparation method: CN, 201210473364.2[P]. 2013-02-13.
[92]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). A preparation method of lithium ion battery cathode material: CN, 201210556657.7[P]. 2013-04-03.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons