•  
  •  
 

Corresponding Author

Zhang-quan PENG(zqpeng@ciac.ac.cn)

Abstract

Mass Spectrometry, coupled with electrochemistry, is a powerful research tool to study mechanisms for a broad range of electrode reactions by identifying and quantifying reaction products and intermediates. In this review, we summarize the recent advances in the Li-O2 battery researches offered by electrochemical mass spectrometry based on our group investigations. These include the research progresses in electrolytes, cathode materials (electrocatalysts), and parasitic reactions, i.e., the key issues associated with Li-O2 research. In addition, we also discuss the effects of irreversible side reactions involved in battery systems on charge and discharge processes.

Graphical Abstract

Keywords

electrochemical mass spectrometry, lithium-oxygen batteries, quantitative analysis

Publication Date

2015-06-28

Online Available Date

2015-06-28

Revised Date

2015-03-10

Received Date

2014-12-05

References

[1] Bruckenstein S, Gadde R R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J]. Journal of the American Chemical Society, 1971, 93(3): 793-794.
[2] Wolter O, Heitbaum J. Differential electrochemical mass-spectroscopy (Dems) - A new method for the study of electrode processes[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(1): 2-6.
[3] Hambitzer G, Heitbaum J. Electrochemical thermospray mass spectrometry[J]. Analytical Chemistry, 1986, 58(6): 1067-1070.
[4] Deng H, Van Berkel G J. Electrochemical polymerization of aniline investigated using on-line electrochemistry/electrospray mass spectrometry[J]. Analytical Chemistry, 1999, 71(19): 4284-4293.
[5] Arakawa R, Abura T, Fukuo T, et al. Analysis of electrolysis reactions of metal complexes using on-line electrospray ionization mass spectrometry with a compact electrolytic flow-through cell[J]. Bulletin of the Chemical Society of Japan, 1999, 72(7): 1519-1523.
[6] Johnson K A, Shira B A, Anderson J L, et al. Chemical and on-line electrochemical reduction of metalloproteins with high-resolution electrospray ionization mass spectrometry detection[J]. Analytical Chemistry, 2001, 73(4): 803-808.
[7] Kertesz V, Van Berkel G J. Surface-assisted reduction of aniline oligomers, N-phenyl-1,4-phenylenediimine and thionin in atmospheric pressure chemical ionization and atmospheric pressure photoionization[J]. Journal of the American Society for Mass Spectrometry, 2002, 13(2): 109-117.
[8] Barber M, Bordoli R S, Elliott G J, et al. Fast atom bombardment mass spectrometry[J]. Analytical Chemistry, 1982, 54(4): 645A-657A.
[9] Pretty J R, Evans E H, Blubaugh E A, et al. Minimisation of sample matrix effects and signal enhancement for trace analytes using anodic stripping voltammetry with detection by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1990, 5(6): 437-443.
[10] Mozhzhukhina N , Méndez De Leo L P , Calvo E J. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18375-18380.
[11] Leskes M, Moore A J, Goward G R, et al. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26929-26939.
[12] Younesi R, Hahlin M, Treskow M, et al. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES)[J]. The Journal of Physical Chemistry C, 2012, 116 (35): 18597-18604.
[13] Ryan K R, Trahey L, Okasinski J S, et al. In situ synchrotron X-ray diffraction studies of lithium oxygen batteries[J]. Journal of Materials Chemistry A, 2013, 1(23): 6915-6919.
[14] Frith J T, Russell A E, Garcia-Araez N, et al. An in-situ Raman study of the oxygen reduction reaction in ionic liquids[J]. Electrochemistry Communications, 2014, 46: 33-35.
[15] Zhai D, Wang H, Lau K C, et al. Raman evidence for late stage disproportionation in a Li-O2 battery[J]. The Journal of Physical Chemistry Letters, 2014, 5 (15): 2705-2710.
[16] Zhong L, Mitchell R R, Liu Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2[J]. Nano Letters, 2013, 13 (5): 2209-2214.
[17] Zheng H, Xiao D, Li X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14 (8): 4245-4249.
[18] Wen R, Hong M, Byon H R. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte[J]. Journal of the American Chemical Society, 2013, 135(29): 10870-10876.
[19] Lu J, Jung H J, Lau K C, et al. Magnetism in lithium-oxygen discharge product[J]. ChemSusChem, 2013, 6(7): 1196-1202.
[20] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of The Electrochemical Society, 1996, 143(1): 1-5.
[21] Read J. Characterization of the lithium/oxygen organic electrolyte battery[J]. Journal of The Electrochemical Society, 2002, 149(9): A1190-A1195.
[22] Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J]. Journal of The Electrochemical Society, 2003, 150(10): A1351-A1356.
[23] Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047.
[24] Wu Xu, Viswanathana V V, Deyu Wang, et al. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. Journal of Power Sources, 2011, 196(8): 3894-3899.
[25] Xiao J, Wang D H, Wu Xu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of The Electrochemical Society, 2010, 157(4): A487-A492.
[26] Wu Xu, Kang Xu, Viswanathana V V, et al. Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes[J]. Journal of Power Sources, 2011, 196(22): 9631-9639.
[27] McCloskey B D, Bethune D S, Shelby R M, et al. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166.
[28] Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. Journal of The Electrochemical Society, 2013, 160(4): A549-A552.
[29] Jung H, Hassoun J, Park J, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4: 579-585.
[30] Planes G A, Gonzalo García, Pastor E. High performance mesoporous Pt electrode for methanol electrooxidation. A DEMS study[J]. Electrochemistry Communications, 2007, 9(4): 839-844.
[31] Martínez-Huerta M V, Rodríguez J L, Tsiouvaras N, et al. Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: Structural characteristics and performance for methanol electrooxidation[J]. Chemistry of Materials, 2008, 20(13): 4249-4259.
[32] Tsiouvaras N, Meini S, Buchberger I, et al. A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li-O2 battery[J]. Journal of The Electrochemical Society, 2013, 160(3): A471-A477.
[33] Bach H T, Meyer B A, Tuggle D G. Role of molecular diffusion in the theory of gas flow through crimped-capillary leaks[J]. Journal of Vacuum Science & Technology A, 2003, 21(3): 806.
[34] Meini S, Piana M,Tsiouvaras N,et al. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(4): A45-A48.
[35] Freunberger S A, Chen Y H, Drewett N E, et al. The lithium-oxygen battery with ether-based electrolytes[J]. Angewandte Chemie International edition, 2011, 50(37): 8609-8613.
[36] Bryantsev V S, Giordani V, Walker W, et al. Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O2?-)[J]. Journal of Physical Chemistry A, 2011, 115(44): 12399-12409.
[37] Bryantsev V S, Uddin J, Giordani V, et al. The identification of stable solvents for nonaqueous rechargeable Li-air batteries[J]. Journal of The Electrochemical Society, 2013, 160(1): A160-A171.
[38] Mizuno F, Takechi K, Higashi S, et al. Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent[J]. Journal of Power Sources, 2013, 228: 47-56.
[39] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.
[40] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature Chemistry, 2013, 5: 489-494.
[41] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
[42] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.
[43] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337: 563-566.
[44] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12: 1050-1056.
[45] Ogasawara T, Aurélie Débart, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4): 1390-1393.
[46] Beyer H, Meini S, Tsiouvaras N, et al. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries[J]. Physical Chemistry Chemical Physics, 2013, 15: 11025-11037.
[47] Peng Z Q, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie International edition, 2011, 123(28): 6475-6479.
[48] Meini S, Tsiouvaras N, Schwenke K U, et al. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11478-11493.
[49] Gowda S R, Brunet A, Wallraff G M,et al. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(2): 276-279.
[50] Meini S, Solchenbach S, Piana M, et al. The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2O2 in Li-O2 batteries[J]. Journal of The Electrochemical Society, 2014, 161 (9): A1306-A1314.
[51] McCloskey B D, Valery A, Luntz A C, et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 Batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2989-2993.
[52] McCloskey B D, Bethune D S, Shelby R M, et al. Limitations in rechargeability of Li-O2 batteries and possible origins[J]. Journal of Physical Chemistry Letters, 2012, 3(20): 3043-3047.
[53] Imanishi N, Luntz A C, Bruce P. The lithiun air battery: Fundamentals[M]. New York: Springer, 2014: 59-60.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.