•  
  •  
 

Corresponding Author

Yong-lei XIN(xinyonglei@163.com)

Abstract

The Ru-Ir-Sn metal oxide anodes coated on titanium (Ti/Ru-Ir-Sn) were prepared by thermal decomposition. The effects of amounts of carbon naotubes (CNTs) on anodic properties were studied by TGA, SEM, EDS, cyclic voltammetry, EIS, polarization measurements and accelerated life test. The thermogravimetric analysis and EDS spectrum data showed that the high temperature oxidation decomposition of CNTs did not take place under the condition of the sintering temperature of 470 ℃, and the CNTS still existed in the anode coating in an element form. Compared with the contrast samples, the surface crack of the coating increased, but remained typical morphology. Adding the CNTs significantly improved the electrochemical properties of Ti/Ru-Ir-Sn oxide anodes, enhanced the active surface area of the anode, and reduced the internal resistance of the coating, which improved the electrocatalytic activity of the anode toward chlorine evolution, thus, the chlorine evolution potential increased slowly, and the accelerated life was also apparently improved. Particularly, the Ti/Ru-Ir-Sn oxide anode adding 0.1 g·L-1 CNTs exhibited the best anodic electrocatalytic activity and stability

Graphical Abstract

Keywords

carbon nanotubes, metal oxide anodes, electric catalytic activity, accelerated life

Publication Date

2015-08-28

Online Available Date

2015-08-28

Revised Date

2015-03-18

Received Date

2014-12-19

References

[1] Pan H B(潘会波). Current status of development and applications of Ti anodes in China[J]. Rare Metal Materials and Engineering(稀有金属材料与工程), 1999, 28(6): 337-339.
[2] Papastefanakis N, Mantzavinos D, Katsaounis A. DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode[J]. Journal of Applied Electrochemistry, 2010, 40(4): 729-737.
[3] Kim S S, Kim S D. Application of PVD coatings for developing a DSA-type anode[J]. Thin Solid Films, 2008, 516(11): 3673-3679.
[4] Comninellis C H, Vercesi G P. Characterization of DSA-type oxygen evolving electrodes: choice of a coating[J]. Journal of Applied Electrochemistry, 1991, 21(4): 335-345.
[5] Trasatti S. Electrocatalysis: Understanding the success of DSA[J]. Electrochimica Acta, 2000, 45(15/16): 2377-2385.
[6] Huang Y T(黄运涛), Peng Q(彭乔). The deactivation mechanism of metal oxide anode used in seawater electrolysis[J]. Rare Metal Materials and Engineering(稀有金属材料与工程), 2006, 35(10): 1610-1615.
[7] Lu Y Y(逯艳英), Wu J H(吴建华), Sun M X(孙明先), et al. Prevention of ocean halobios fouling[J]. Corrosion & Protection(腐蚀与防护), 2001, 22(12): 530-534.
[8] Wang B(王彬), Hou S Z(侯世忠), Han Y(韩严), et al. Recent status of development of metal oxide coated anode for antifouling by electrolyzing seawater[J]. Development and Application of Materials(材料开发与应用), 1998, 13(1): 41-45.
[9] Costa C R, Botta C M, Espindola E L, et al. Electrochemical treatment of tannery wastewater using DSA electrodes[J]. Journal of Hazardous Materials, 2008, 153(1/2): 616-627.
[10] Ji L(嵇雷), Wang J T(王均涛), Liu W B(刘文彬), et al. The effect of Ru:Sn on properties of Ru-Ir-Sn oxide anode coatings[J]. Journal of Electrochemistry(电化学), 2008, 14(3): 263-268.
[11] Ji L(嵇雷), Wang J T(王均涛), Xu L K(许立坤), et al. The effect of annealed temperature on properties of Ru-Ir-Sn oxide anode coatings[J]. Journal of Electrochemistry(电化学), 2008, 14(2): 205-209.
[12] Wang J T(王均涛), Han Y(韩严), Xu L K(许立坤), et al. The deactivation mechanism of metal oxide anode under alternative current electrolysis condition[J]. Journal of Electrochemistry(电化学), 2005, 11(4): 407-411.
[13] Vazquez-Gomez L, Ferro S, De Battisti A. Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology[J]. Applied Catalysis B: Environmental, 2006, 67(1): 34-40.
[14] Makgae M E, Theron C C, Przybylowicz W J, et al. Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol[J]. Materials Chemistry and Physics, 2005, 92(2): 559-564.
[15] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathodic catalysts of direct methanol fuel cells[J]. Carbon, 2002, 40(5): 791-794.
[16] Liu Z H, Lin X H, Lee J Y, et al. Preparation and characterization of platinm-based electro catalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells[J]. Langmuir, 2002, 18(10): 4054-4060.
[17] Li Z(李壮), Tang Z Y(唐枝艳), Wang J J(王家君), et al. Radiation graft modification and deposition of nano-copper on carbon nanotube surface[J]. Chinese Journal of Rare Metals(稀有金属), 2010, 43(2): 215-220.
[18] Bonard J M, Croci M, Klinke C, et al. Carbon nanotube films as electron field emitters[J]. Carbon, 2002, 40(10): 1715-1728.
[19] Duan X Y, Ma F, Yuan Z X, et al. Comparative studies on the electro-catalytic oxidation performance of surfactant-carbon nanotube-modified PbO2 electrodes[J]. Journal of Electroanalytical Chemistry, 2012, 677/678: 90-100.
[20] Zeng F G, Li X, Liu W H, et al. Synthesis of CNT film on the surface of micro-pyramid array and its intense pulsed emission characteristics[J]. Chinese Science Bulletin, 2012, 57(14): 1739-1742.
[21] Huang Q Y(黄秋玉), Zeng X S(曾效舒), Zeng G(曾刚), et al. Effects of nanotubes on microstructure and mechanical properties of magnesium-zinc alloy[J]. Chinese Journal of Rare Metals(稀有金属), 2012, 36(5): 750-756.
[22] Zou R J, Xue S L, Li D Y. A novel approach to improve the field emission characteristics of printed CNT films[J]. Chinese Optics Letters, 2009, 7(2): 130-133.
[23] Forti J C, Olivi P, de Andrade A R. Characterisation of DSA-type coatings with nominal composition Ti/Ru0.3Ti(0.7-x)SnxO2 prepared via a polymeric precursor[J]. Electrochimica Acta, 2001, 47(6): 913-920.
[24] Tang Y(唐益), Xu L K(许立坤), Wang J T(王均涛), et al. Study on the nanostructured Ti/IrO2-Ta2O5-SnO2 oxide anodes[J]. Rare Metal Materails and Engineering(稀有金属材料与工程), 2010, 39(4): 687-691.
[25] Huang S T(黄松涛), Kan S R(阚素荣), Chu M Y(储茂友), et al. Cyclic voltammetry and electrochemical properties of LiMn2O4 and Li2CO3 Modified LiMn2O4[J]. Chinese Journal of Rare Metals (稀有金属), 2006, 30(4): 448-452.
[26] Jiang J F(姜俊峰), Xu H B(徐海波), Wang T Y(王廷勇), et al. Study on electrocatalytic properties of TiN based IrO2+Ta2O5 coating anodes[J]. Rare Metal Materials and Engineering(稀有金属材料与工程), 2007, 36(2): 344-348.
[27] Lassali T. A. F, Boodts J F C, Bulhoes L O S. Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements[J]. Electrochimica Acta. 1999, 44(24): 4203-4216.
[28] Fang D(方度), Jiang L S(蒋兰荪), Wu Z D(吴正德). Chlor Alkali Technology(氯碱工艺学)[M]. Beijing: Chemical Industry Press(化学工业出版社), 1990: 69-93.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.