Corresponding Author

Hong-tao LIU(liuht@csu.edu.cn)


Spinel LiMn1.9Al0.1O3.95F0.05 cathode materials with good crystallinity were synthesized by a sol-gel process followed with a high-temperature solid reaction. The effects of partial substitution of Al for Mn, and F for O on the structure and the electrochemical performance were investigated. The results showed that LiMn1.9Al0.1O3.95F0.05 exhibited the same crystalline state as LiMn2O4, but much better electrochemical stability at higher rate cycling. As a result, LiMn1.9Al0.1O3.95F0.05 could maintain stable electrochemical lithium storage even suffering from different rate currents that retains over 90% of the initial capacity after 150 cycles at continuously varying currents (i.e. 0.1C, 0.5C, and 1C).

Graphical Abstract


spinel lithium manganese oxide, lithium-ion battery, sol-gel method, rate capability, capacity retention

Publication Date


Online Available Date


Revised Date


Received Date



[1] Morales J, Sanchez L, Tirado J. New doped Li-M-Mn-O (M = A1, Fe, Ni) spinels as cathodes for rechargeable 3V lithium batteries[J]. Journal of Solid State Electrochemistry, 1998, 2(6): 420-426.
[2] Zheng Z S(郑子山), Tang Z L(唐子龙), Zhang Z T(张中太), et al. Development of research on LiMn2O4 cathode material for lithium batteries[J]. Journal of Inorganic Materails(无机材料学报), 2003, 18(2): 257-263.
[3] Guo G H(郭光辉), Chen S(陈 珊), Liu F F(刘芳芳), et al. Development of research on doping of spinel LiMn2O4[J]. New Chemical Materials(化工新型材料), 2013, 41(10): 169-171.
[4] Yi T F, Fang Z K, Xie Y, et al. Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochimica Acta, 2014, 147(20): 250-256.
[5] Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution[J]. Journal of the Electrochemical Society, 2001, 148(2): 171-182.
[6] Kang Y J, Kim J H, Sun Y K. Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries[J]. Journal of Power Sources, 2005, 146(1/2): 237-240.
[7] Yi T F, Zhu Y R, Zhu R S. Physicochemical properties of LiAlxMn2-xO4 and LiAl0.05Mn1.95O4-yFy cathode material by citric acid-assisted sol-gel method[J]. Ionics, 2009, 15(2): 177-182.
[8] Xu C Q(徐茶清), Tian Y W(田彦文), Zhai Y C(翟玉春), et al. The preparation of spinel LiMn2O4 using sol-gel method[J]. Journal of Northeastern University of Natural Science (东北大学学报), 2004, 25(10): 998-1001.
[9] Xu C Q(徐茶清), Tian Y W(田彦文), Liu L Y(刘丽英), et al. The effect of Al3+ doping on the structure and electrochemical performance of Li1.02Mn2O4[J]. Chinese Journal of Materials Research(材料研究学报), 2006, 20(5): 544-547.
[10] Xia Y G, Zhang Q, Wang H Y, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-yO4+δ at elevated temperature[J]. Electrochimica Acta, 2007, 52(14): 4708-4714.
[11] Yi T F, Hu X G, Gao K. Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode material by the ultrasonic-assisted sol-gel method[J]. Journal of Power Sources, 2006, 162(1): 636-643.
[12] Kiani M A, Mousavi M F, Rahmanifar M S. Synthesis of nano- and micro-particles of LiMn2O4: Electrochemical investigation and assessment as a cathode in Li battery[J]. International Journal of Electrochemical Science, 2011, 6(7): 2581-2595.
[13] Zheng H, Zhang Q, Li L, et al. Synthesis and electrochemical properties of spinel LiMn1.95MxO4-yFy for lithium ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5124-5129.
[14] Bao S J, Zhou W H, Liang Y Y, et al. Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution[J]. Materials Chemistry and Physics, 2006, 1(95): 188-192.
[15] Yi T F, Hu X G, Wang D L, et al. Effects of Al, F dual substitutions on the structure and electrochemical properties of lithium manganese oxide[J]. Journal of University of Science and Technology Beijing, 2008, 15(2): 182-186.
[16] Xiong L L, Xu Y L, Tao T, et al. Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(47): 24563-24568.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.