Abstract
As a promising cathode material for sodium ion batteries, pure phase Na2MnSiO4/C nanocomposite was successfully synthesized by a sol-gel method with a citric acid as a complex agent. The as prepared material was characterized by XRD, FTIR, SEM and TEM techniques. XRD and Rietveld refinement results indicated that the sample was indexed as monoclinic structure with space group of Pn. It was observed by SEM and TEM that the obtained product consisted of micro-scaled secondary particles, which were composed of NaMnSiO4 nanocrystallites and amorphous carbon network. More importantly, the uniform carbon network in the nanocomposite greatly enhanced the electronic conductivity of the material, thus, resulted in the impressive electrochemical performance. The electrochemical tests showed that the Na2MnSiO4/C could deliver a reversible capacity of 113 mAh·g-1 (vs. Na+/Na) at a current density of 14 mA·g-1 within 1.5 ~ 4.2 V when 1 mol·L-1 NaClO4 + PC was used as the electrolyte.
Graphical Abstract
Keywords
Sodium ion battery, Na2MnSiO4, sol-gel method, electrochemical performance
Publication Date
2015-08-28
Online Available Date
2015-08-28
Revised Date
2015-05-28
Received Date
2015-04-22
Recommended Citation
Shou-ding LI, Jiang-huai GUO, Yong XIE, Jin-xiao MI, Yong YANG.
Synthesis, Structure and Electrochemical Performance of Na2MnSiO4/C Cathode Material for Na-Ion batteries[J]. Journal of Electrochemistry,
2015
,
21(4): 332-335.
DOI: 10.13208/j.electrochem.150422
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss4/5
References
[1] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[2] Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J].Energy & Environmental Science, 2013, 6(8): 2312-2337.
[3] Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[4] Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591.
[5] Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
[6] Duncan H, Kondamreddy A, Mercier P H J, et al. Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries[J]. Chemistry of Materials, 2011, 23(24): 5446-5456.
[7] Chen C Y, Matsumoto K, Nohira T, et al. Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte[J]. Electrochemistry Communications, 2014, 45: 63-66.
[8] MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250.
[9] Tarte P. Infrared spectroscopic study of ortho-silicates and orthogermantes[J]. Spectrochimica Acta, 1962, 18(4): 467-483.
[10] Pires A M, Davolos M R. Luminescence of europium(III) and manganese(II) in barium and zinc orthosilicate[J]. Chemistry of Materials, 2001, 13(1): 21-27.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons