•  
  •  
 

Corresponding Author

Hui WANG(wanghui@bjfu.edu.cn)

Abstract

The Pd/graphene composites were synthesized by a modified Hummers method and NaBH4 reduction process, and then were characterized using XRD, SEM, XPS, and TEM. The Pd/graphene modified glassy carbon electrode (Pd/graphene/GCE) was prepared based on this method. Cyclic voltammetry was used to study the optimum operation conditions for the 4-chlorophenol detection. It was shown that the surface of the graphene was smooth and Pd nanoparticles were uniformly dispersed on graphene. The average particle size was calculated to be 6.5 ± 0.05 nm. These nanoparticles exhibited high catalytic activity and sensitivity toward chlorophenols. PBS with a concentration of 0.1 mol?L-1 at pH 6.8 was the best supporting electrolyte for the detection of 4-chlorophenol. Peak current and the square root of the scan rate were in a good linear relationship (R2 = 0.992). Using the Pd/graphene/GCE analytical performance with the linear range from 1 to 100 μmol?L-1 (R2 = 0.967), a detection limit of 0.57 μmol?L-1 was obtained. The Pd/graphene/GCE had a good reproducibility and stability. Therefore, the Pd/graphene/GCE showed a high catalytic activity, which provides a simple, quick and reproducible method for the detection of 4-chlorophenol.

Graphical Abstract

Keywords

electrochemical detection, chlorophenol, Pd/graphene, modified electrode

Publication Date

2015-10-28

Online Available Date

2015-10-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.