•  
  •  
 

Corresponding Author

Hong LI(hli@iphy.ac.cn)

Abstract

Energy storage is a critical supporting technology in many fields such as energy, information, transportation, and healthcare, aerospace, advanced manufacture, advanced equipment, national security. Electrochemical energy storage technique has been widely applied and is developing continuously. In this article, the energy storage mechanism, technical indicators and technology ready level in electrochemical energy storage are summarized. Mainly based on lithium ion batteries, untraditional electrochemical issues in electrochemical energy storage devices are described from the perspective of fundamental science. These issues deal mainly with thermodynamics, kinetics, size effect, asymmetric system, asymmetric reaction path, surface phenomenon, hybrid ion transportation, and solid state battery. Finally, some suggestions concerning future developments in electrochemical energy storage technology are provided.

Graphical Abstract

Publication Date

2015-10-28

Online Available Date

2015-10-28

References

[1] Nie Y X(聂玉昕). 《中国大百科全书》74卷(第二版)物理学 词条:能量[M]. Encyclopedia of China Publishing House(中国大百科全书出版社), 2009-07: 352-353.
[2] Subhash C, Singhal K K. Han M F(韩敏芳), Jiang X F(蒋先锋)译. 高温固体氧化物燃料电池原理、设计和应用[M]. Science Press(科学出版社), 2007.
[3] Zhong K, Zhang B, Luo S, et al. Investigation on porous MnO microsphere anode for lithium, ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6802-6808.
[4] Lyu Y, Zhao N, Hu E, et al. Probing reversible multi-electron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0-4.8 V[J]. Chemistry of Materials, 2015, 27(15): 5238-5252.
[5] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
[6] Cui Z, Guo X, Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions[J]. Electrochimica Acta, 2013, 89: 229-238. [7] Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials: Case study of RuO2[J]. Advanced Materials, 2008, 20(3): 501-505.
[8] Wu X Y, Jin S F, Zhang Z Z, et al. Unravelling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): e1500330.
[9] Zheng H(郑浩), Gao J(高健), Wang S F(王少飞), et al. Fundamental scientific aspects of lithium batteries (VI)-Ionic transport in solids[J]. Energy Storage Science and Technology(储能科学与技术), 2013, 2(6): 620-635.
[10] Cui Z H, Guo X X, Li H. Equilibrium voltage and overpotential variation of nonaqueous Li-O2 batteries using the galvanostatic intermittent titration technique[J]. Energy & Environmental Science, 2015, 8(1): 182-187.
[11] Mueller-Neuhaus J R, Dunlap R A, Dahn J R. Understanding irreversible capacity in LixNi1-yFeyO2 cathode materials[J]. Journal of The Electrochemical Society, 2000, 147(10): 3598-3605.
[12] Johnson C S, Kim J-S, Jeremy Kropf A, et al. The role of Li2MO2 structures (M = metal ion) in the electrochemistry of xLiMn0.5Ni0.5O2?(1-x)Li2TiO3 electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2002, 4(6): 492-498.
[13] Wu X Y, Ma J, Ma Q D, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(25): 13193-13197.
[14] Chen Z, Chen Q, Chen L, et al. Electrochemical behavior of nanostructured ε-VOPO4 over two redox plateaus[J]. Journal of The Electrochemical Society, 2013, 160(10): A1777-A1780.
[15] Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials, 2006, 18(11): 1421-1426.
[16] Yu X, Pan H, Wan W, et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters, 2013, 13(10): 4721-4727.
[17] Wu N, Lyu Y C, Xiao R J, et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6: e120.
[18] Wu N, Yang Z Z, Yao H R, et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium Co-intercalation[J]. Angewandte Chemie International Edition, 2015, 54(19): 5757-5761.
[19] Liu N, Li H, Wang Z, et al. Origin of solid electrolyte interphase on nanosized LiCoO2[J]. Electrochemical and Solid-State Letters, 2006, 9(7): A328-A331.
[20] Wang Z, Chen L. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 254-258.
[21] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[22] LI H(李泓). Fundamental scientific aspects of lithium ion batteries (XV) - Summary and outlook[J]. Energy Storage Science and Technology(储能科学与技术), 2015, 4(3): 306-318.
[23] Li W J(李文俊), Chu G(褚赓), LI H(李泓), et al. Fundamental scientific aspects of lithium batteries (XII) - Characterization techniques[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(6): 642-667.
[24] Ma C(马璨), Lyu Y C(吕迎春), LI H(李泓). Fundamental scientific aspects of lithium batteries (VII) - Positive electrode materials[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(1): 53-65.
[25] Gao J(高健). Fundamental scientific aspects of lithium batteries (IV) - Phase transition and phase diagram(2)[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266.
[26] Gao J(高健), Lyu Y C(吕迎春), Li H(李泓). Fundamental scientific aspects of lithium batteries (III) - Phase transition and phase diagram[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266.
[27] Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of LiNixLi1/3-2x/3Mn2/3-x/3O2[J]. Journal of The Electrochemical Society, 2002, 149(6): A778-A791.
[28] Kim J S, Johnson C S, Thackeray M M. Layered xLiMO2(1-x)Li2MO3 electrodes for lithium batteries: A study of 0.95LiMn0.5Ni0.5O2?0.05Li2TiO3[J]. Electrochemistry Communications, 2002, 4(3): 205-209.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.