•  
  •  
 

Corresponding Author

Dong-feng XUE(dongfeng@ciac.ac.cn)

Abstract

Supercapacitors have high power density and long cycle life compared with battery systems, but they still suffer from low energy density at the same time. In order to increase the energy density of supercapacitors, we have developed a new type of pseudocapacitor, called colloidal ion supercapacitor, which can directly use commercial metal salts as electrode materials and form electroactive matter by in-situ electrochemical reactions without the need of additional materials synthesis processes. Colloidal ion supercapacitor can fully utilize the redox reaction of metal cations with multiple oxidation states, which can completely release the stored electrical energy of multiple-valence cations, leading to high energy density. Due to the presence of colloidal cation ions in the colloidal ion supercapacitor, the diffusion length of electrons and ions can be shortened, leading to high redox reaction kinetics and high power density. Both high energy density and high power density can exist in one supercapacitor devices, called colloidal ionic supercapacitor. This review outlines the concept, basis and the development of colloidal ion supercapacitors, the latest research progresses and the facing future challenges. We hope that colloidal ion supercapacitor can advance the development of the next generation of high-performance electrochemical energy storage devices.

Graphical Abstract

Keywords

supercapacitor, electroactive cation, pseudocapacitor, electrochemical reaction, rare earth

Publication Date

2015-12-23

Online Available Date

2015-11-02

Revised Date

2015-09-25

Received Date

2015-08-25

References

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[2] Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Kluwer-Academic, 1999.

[3] Wu K(吴坤), Xu S Z(许思哲), Zhou X J(周雪姣), et al. Graphene quantum dots enhanced electrochemical performance of polypyrrole as supercapacitor electrode[J]. Journal of Electrochemistry(电化学), 2013, 19(4): 361-370.

[4] Xiao P(肖鹏), Wang D H(王大辉), Lang J W(朗俊伟). Comparison in factors affecting electrochemical properties of thermal-reduced graphene oxide for supercapacitors[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 553-562.

[5] Chen K F(陈昆峰), Xue D F(薛冬峰). Chemical reaction and crystallization control on electrode materials for electrochemical energy storage[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, 45(1): 36-49.

[6] Chen K F(陈昆峰), Yang Y Y(杨阳阳), Chen X(陈旭), et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University (Natural Science)(河南大学学报 自然科学版), 2014, 44(4): 398-415.

[7] Chen K F(陈昆峰), Xue D F(薛冬峰). Rare earth and transitional metal colloidal supercapacitors[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, doi: 10.1007/s11431-015 -5915-z.

[8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.

[9] Becker H E. Low voltage electrolytic capacitor: USA, 2 800 616 (to General Electric)[P]. 1957.

[10] Murphy T C, Wright R B, Sutula R A. Electrochemical capacitors[C]. Delnick F M, Electrochemical Capacitors II, Proceedings, 96-25, New Jersey: The Electrochemical Society, 1997.

[11] Chen K F, Xue D F, Komarneni S. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO[J]. Journal of Power Sources, 2015, 275(1): 136-143.

[12] Chen K F, Sun C T, Xue D F. Morphology engineering of high performance binary oxide electrodes[J]. Physical Chemistry Chemical Physics, 2015, 17(2): 732-750.

[13] Chen K, Song S Y, Liu F, et al. Structural design of graphene for electrochemical energy storage[J]. Chemical Society Reviews, 2015, 44(17): 6230-6257.

[14] Chen K F, Song S Y, Xue D F. Beyond graphene: Materials chemistry toward high performance inorganic functional materials[J]. Journal of Materials Chemistry A, 2015, 3(6): 2441-2453.

[15] Rauda I E, Augustyn V, Dunn B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts of Chemical Research, 2013, 46(5): 1113-1124.

[16] Wang Y G, Xia Y Y. Recent progress in supercapacitors: From materials design to system construction[J]. Advanced Materials, 2013, 25(37): 5336-5342.

[17] Lu Z Y, Chang Z, Zhu W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance[J]. Chemical Communications, 2011, 47(34): 9651-9653.

[18] Kong D S, Wang J M, Shao H B, et al. Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance[J]. Journal of Alloy and Compounds, 2011, 509(18): 5611-5616.

[19] Rakhi R B, Chen W, Cha D Y, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letters, 2012, 12(5): 2559-2567.

[20] Chen K F, Xue D F. Ionic Supercapacitor electrode materials: A system-level design of electrode and electrolyte for transforming ions into colloids[J]. Colloid and Interface Science Communications, 2014, 1(1): 39-42.

[21] Chen K, Song S Y, Xue D F. An ionic aqueous pseudocapacitor system: Electroactive ions in both salt-electrode and redox-electrolyte[J]. RSC Advances, 2014, 4(44): 23338-23343.

[22] Chen K F, Xue D F. Crystallization of tin chloride for promising pseudocapacitor electrode[J]. CrystEngComm, 2014, 16(21): 4610-4618.

[23] Chen K F, Song S Y, Li K Y, et al. Water-soluble inorganic salts with ultrahigh specific capacitance: Crystallization transformation investigation of CuCl2 electrodes[J]. CrystEngComm, 2013, 15(47): 10367-10373.

[24] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176): 1210-1211.

[25] Chen K F, Xue D F. Formation of electroactive colloids via in-situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor[J]. Journal of Colloid and Interface Science, 2014, 430(1): 265-271.

[26] Chen K F, Yang Y Y, Li K Y, et al. CoCl2 designed as excellent pseudocapacitor electrode materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 440-444.

[27] Chen K F, Xue D F. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance[J]. Journal of Colloid and Interface Science, 2014, 424(1): 84-89.

[28] Chen K F, Xue D F. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode[J]. Journal of Colloid and Interface Science, 2014, 416(1): 172-176.

[29] Chen X, Chen K F, Wang H, et al. Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte[J]. Electrochimica Acta, 2014, 147(1): 216-224.

[30] Wei D, Scherer M R J, Bower C, et al. A nanostructured electrochromic supercapacitor[J]. Nano Letters, 2012, 12(4): 1857-1862.

[31] Chen X, Chen K F, Wang H, et al. Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system[J]. CrystEngComm, 2014, 16(29): 6707-6715.

[32] Chen X, Chen K F, Wang H, et al. A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system[J]. Journal of Colloid and Interface Science, 2015, 444(1): 49-57.

[33] Chen K F, Yin S, Xue D F. Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: Formation of electroactive colloids via in-situ electric field assisted coprecipitation[J]. Nanoscale, 2015, 7(3): 1161-1166.

[34] Chen K F, Xue D F, Komarneni S. Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition[J]. Journal of Power Sources, 2015, 279(1): 365-371.

[35] Chen K F, Xue D F. Searching for electrode materials with high electrochemical reactivity[J]. Journal of Materiomics, 2015, doi: 10.1016/j.jmat.2015.07.001.

[36] Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states[J]. Journal of Physical Chemistry A, 2006, 110(39): 11332-11337.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.