Abstract
Herein, a facile synthesis has been explored to prepare carbon aerogel/Ni foam. Graphene oxide, resorcinol and formaldehyde serve as precursors and polymerize in-situ on the Ni foam after hydrothermal synthesis at 85 oC. After lyophilization treatment, the carbon aerogel/Ni foam with porous structure can be obtained. Electrochemical investigations reveal that the carbon aerogel/Ni foam exhibits superior performances in both aqueous and organic electrolytes involving high specific capacitance and long-term cycling stability. The excellent properties can be ascribed to the unique formation and porous structure, which allows more effective transportations of electron and electrolyte ion.
Graphical Abstract
Keywords
font-family: "Times New Roman", "serif", mso-fareast-font-family: 宋体, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA'>carbon aerogel/nickel foam electrode, supercapacitor, hydrothermal synthesis, porous structure
Publication Date
2015-12-23
Online Available Date
2015-12-23
Recommended Citation
Zhong WU, Xin-bo ZHANG.
Carbon Aerogel/Nickel Foam as Electrode for High-Performance Supercapacitor[J]. Journal of Electrochemistry,
2015
,
21(6): 554-559.
DOI: 10.13208/j.electrochem.150841
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol21/iss6/7
References
[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[3] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[4] Kim J Y, Kim K H, Yoon S B, et al. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications[J]. Nanoscale, 2013, 5(15): 6804-6811.
[5] Shearer C J, Cherevan A, Eder D. Application and future challenges of functional nanocarbon hybrids[J]. Advanced Materials, 2014, 26(15): 2295-2318.
[6] Nishihara H, Kyotani T. Templated nanocarbons for energy storage advanced materials[J]. Advanced Materials, 2012, 24(33): 4473-4498.
[7] Yu G H, Xie X, Pan L J, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy, 2013, 2(2): 213-234.
[8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environment Science, 2014, 7(5): 1597-1614.
[9] Wu Z, Huang X L, Wang Z L, et al. Electrostatic induced stretch growth of homogeneous beta-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors[J]. Scientific Reports, 2014, 4: No. 3669.
[10] Huang Y(黄芸), Wu Z(吴中), Zhang X B(张新波). Template-free synthesis of porous NiO hierarchical structure for high performance supercapacitor[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 146-151.
[11] Naoi K, Naoi W, Aoyagi S, et al. New generation nanohybrid supercapacitor[J]. Accounts of Chemical Research, 46(5): 1075-1083.
[12] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(40): 9994-10024.
[13] Chen P, Yang J J, Li S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013 (2): 249-256.
[14] Zhang L, Shi G Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C, 2011, 115(34): 17206-17212.
[15] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small, 2014, 10(17): 3480-3498.
[16] Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS NANO, 2013, 7(5): 4042-4049.
[17] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.
[18] Fang Y, Luo B, Jia Y Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47): 6348-6355.
[19] Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS NANO, 2008, 2(3): 463-470.
[20] Lee J S, Kim S I, Yoon J C, et al. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J]. ACS NANO, 2013, 7(7): 6047-6055.
[21] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS NANO, 2010, 4(8): 4806-4814.
[22] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[23] Xu Y X, Lin Z Y, Huang X Q, et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials, 2013, 25(40): 5779-5784.
[24] Chen J, Sheng K X, Luo P H, et al. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Advanced Materials, 2012, 24(33): 4569-4573.
[25] Cao X H, Shi Y M, Shi W H, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.
[26] Yuan C Z, Yang L, Hou L R, et al. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors[J]. Energy & Environmental Science, 2012, 5(7): 7883-7887.
[27] Wang Z L, Xu D, Xu J J, et al., Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons