•  
  •  
 

Corresponding Author

Hui XU(xuhui@lut.cn)

Abstract

Polyaniline (PANI) is an attractive candidate among the various conductive polymers based on its unique doping/de-doping behavior, intrinsic electrical conductivity, facile synthesis, and environmental stability. However, the poor conductivity and cycle stability in an acid medium have restricted its applications. Our work aims at solving the above problems effectively by doping silver ions into PANI. The PANI and PANI doped with silver ions (PANI/Ag+) were synthesized by a facile interfacial polymerization process, which used aniline as a starting material in toluene in contact with an aqueous solution of silver nitrate varied from 0.04 mol•L-1 to 0.20 mol•L-1. The as-synthesized PANI and PANI/Ag+ were subjected to the physico-chemical characterization by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical behaviors of the polymers were studied by cyclic voltammetry (CV), galvanostatic charge-discharge test (CP) and electrochemical impedance spectroscopy (EIS) in 0.5 mol•L-1 Na2SO4 electrolyte. It turned out that the PANI/0.12 mol•L-1 Ag+ showed larger specific capacitance of 529 F•g-1 and better specific capacitance retention of 51% after 1000 cycles at a current density of 5 mA•cm-2 compared with those of PANI. The results indicated that the PANI/Ag+ is a promising electrode material for supercapacitors.

Graphical Abstract

Keywords

polyaniline, silver ions, specific capacitance, doping

Publication Date

2016-02-29

Online Available Date

2015-12-01

Revised Date

2015-11-26

Received Date

2015-10-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.