•  
  •  
 

Corresponding Author

Lu-hua JIANG(sunshine@dicp.ac.cn);
Gong-quan SUN(gqsun@dicp.ac.cn)

Abstract

The stability of carbon supports is essential for electrocatalysts of fuel cells. Herein, the mesoporous carbon with the high graphitic degree (highly graphitic mesoporous carbon, HGMC) was synthesized by using resorcinol as the carbon precursor, SiO2 as the templates and urea as the reducing agent. The as-prepared HGMC was characterized by XRD, Raman spectroscopy, TEM, N2 adsorption. The stability of HGMC was evaluated by mimicking the start-up/shut-down conditions of fuel cells in a three-electrode system referring to the NREL standard. The obtained HGMC is of moderate surface area (187.4 m2•g-1) and is chemically stable under potentiodynamic cycling as compared to the commercial Vulcan XC-72, while the high graphitic structure is adverse to the mass transport. To overcome the drawback of the HGMC in mass transportation, MWCNTs was introduced as a spacer to construct a 3D multi-scaled support. Compared to the single HGMC supported Pt catalyst and the commercial Pt/C-JM catalyst, the multi-scaled MSGC (the mixture of HGMC and MWCNTs with a mass ratio of 1:1) supported Pt catalyst displayed both enhanced electrochemical stability and significantly improved mass transportation for the oxygen reduction reaction, due to the stability and the multi-scaled structure of the carbon supports.

Graphical Abstract

Keywords

carbon support, platinum, oxygen reduction reaction, fuel cell

Publication Date

2016-04-28

Online Available Date

2016-04-28

Revised Date

2016-04-15

Received Date

2016-01-04

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.