Abstract
Due to interesting size effect, physical and chemical properties, nano-scale gold materials have been commonly used to catalytic reactions. However, the application of gold nanomaterials in the field of electrocatalysis is limited. Herein, we report the synthesis of gold nanparticles supported on carbon through chemical reduction of HAuCl4 by NaBH4 under mild conditions in the presence of surfactants as soft templates, carbon black or graphene as a support. We investigated a series of key reaction parameters, including reagent concentration, temperature, the types of carbon supports and surfactants. With the optimum synthetic parameters, we successfully obtained supported 1 ~ 4 nm gold particles. In addition, we found that the heat treatment could effectively remove such a surfactant as Brij35. The purified electrocatalysts demonstrated electrocatalytic activities toward both oxygen reduction reaction and alcohol oxidation reaction.
Graphical Abstract
Keywords
synthesis, supported gold nanoparticles, electrocatalysis
Publication Date
2016-04-28
Online Available Date
2016-03-25
Revised Date
2016-03-12
Received Date
2016-03-05
Recommended Citation
Rui YAO, Yu-jiang SONG, Huan-qiao LI, Jia LI, Jian-guo LIU.
Preparation Parameters Optimization and Electrocatalytic Properties of Supported Au Nanoparticles[J]. Journal of Electrochemistry,
2016
,
22(2): 147-156.
DOI: 10.13208/j.electrochem.151151
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss2/7
References
[2] Haruta M. Catalysis - gold rush[J]. Nature, 2005, 437(7062): 1098-1099.
[6] Gong J L, Flaherty D W, Yan T, et al. Selective oxidation of propanol on Au(111): Mechanistic insights into aerobic oxidation of alcohols[J]. ChemPhysChem, 2008, 9(17): 2461-2466.
[12] Xie Y, Li H Q, Tang C Z, et al. A high-performance electrocatalyst for oxygen reduction based on reduced graphene oxide modified with oxide nanoparticles, nitrogen dopants, and possible metal-N-C sites[J]. Journal of Materials Chemistry A, 2014, 2(6): 1631-1635.
[13] Si W F, Li J, Li H Q, et al. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity[J]. Nano Research, 2013, 6(10): 720-725.
[14] Li S S, Li H Q, Zhang Y S, et al. One-step synthesis of carbon-supported foam-like platinum with enhanced activity and durability[J]. Journal of Materials Chemistry A, 2015, 3(43): 21562-21568.
[15] Xie Y, Tang C Z, Wang A J, et al. Self-assembled nanoporous hemin with high density of ordered active sites and large surface area for oxygen reduction reaction[J]. Faraday Discuss, 2014, 176: 393-408.
[16] Li H Q, Yao R, Wang D, et al. Facile synthesis of carbon supported Pd3Au@super-thin Pt core/shell electrocatalyst with a remarkable activity for oxygen reduction[J]. Journal of Physical Chemistry C, 2015, 119(8): 4052-4061.
[17] Li S S, Liu H Y, Wang Y, et al. Controlled synthesis of high metal loading electrocatalysts with significantly enhanced activity and durability toward oxygen reduction reaction[J]. RSC Advances, 2015, 5(12): 8787-8792.
[18] Li L(李莉), Wei Z D(魏子栋). Electrochemical catalysis: A DFT study[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 307-315.
[19] Nguyen T G H, Pham T V A, Phuong T X, et al. Nano-Pt/C electrocatalysts: Synthesis and activity for alcohol oxidation[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4: 035008.