Abstract
Solid state NMR technique is a powerful tool for characterizing the local structure and compositions of solid materials quantitatively. A comprehensive understanding of the structure evolution during the electrochemical reactions of the materials for lithium/sodium ion batteries will be obtained with the combination of solid state NMR, XRD, and XAS methods. Through analyzing solid state NMR spectra, we can obtain the compositions, local structures and ion diffusion dynamics of electrodes, electrolytes and surface layers for lithium/sodium ion batteries, providing an important theoretical support for the design and development of high-performance materials for batteries. In this paper, we review the recent advances in the application of solid state NMR techniques in studies of electrodes, electrolyte materials and solid-electrolyte interface (SEI layer) for lithium/sodium ion batteries over the past 3 years, in combination with research results from our group.
Graphical Abstract
Keywords
Solid state NMR, Local structure, Lithium ion batteries, Sodium ion batteries, Structure-function relationship
Publication Date
2016-06-28
Online Available Date
2016-04-11
Revised Date
2016-02-19
Received Date
2016-01-13
Recommended Citation
Gui-ming ZHONG, Zi-geng LIU, Da-wei WANG, Qi LI, Ri-qiang FU, Yong Yang.
Recent Progress in Solid-state NMR Study of Electrode/electrolyte Materials for Lithium/sodium Ion Batteries[J]. Journal of Electrochemistry,
2016
,
22(3): 231-243.
DOI: 10.13208/j.electrochem.151246
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss3/3
References
[1] Melot B C, Tarascon J-M. Design and preparation of materials for advanced electrochemical storage[J]. Accounts of Chemical Research, 2013, 46 (5): 1226-1238.
[2] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7 (1): 19-29.
[3] Grey C P, Dupré N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chemical Reviews, 2004, 104 (10): 4493-4512.
[4] Zhong G M (钟贵明), Hou X (侯旭), Chen S S (陈守顺), et al. Solid-state NMR study of electrode/electrolyte materials for lithium ion batteries [J]. Chinese Science Bullettin (科学通报), 2013, 58 (32): 3287-3300.
[5] Hung I, Zhou L, Pourpoint F, et al. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz[J]. Journal of the American Chemical Society, 2012, 134 (4): 1898-1901.
[6] Liu Z, Hu Y-Y, Dunstan M T, et al. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3[J]. Chemistry of Materials, 2014, 26 (8): 2513-2521.
[7] Tong Y Y. Nuclear spin-echo fourier-transform mapping spectroscopy for broad NMR lines in solids[J]. Journal of Magnetic Resonance, Series A, 1996, 119 (1): 22-28.
[8] Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131: 9239-9249.
[9] Wei T, Yanpeng L, Chengxin P, et al. Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system[J]. Journal of the American Chemical Society, 2015, 137 (7)
[10] Wang D, Zhong G, Pang W K, et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites[J]. Chemistry of Materials, 2015, 27 (19): 6650-6659.
[11] Clément R J, Bruce P G, Grey C P. Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162 (14): A2589-A2604.
[12] Xu J, Lee D H, Clément R J, et al. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chemistry of Materials, 2014,
[13] Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram[J]. Nature materials, 2011, 10 (1): 74-80.
[14] Gonzalo E, Han M H, Lopez del Amo J M, et al. Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries[J]. Journal of Materials Chemistry A, 2014, 2 (43): 18523-18530.
[15] Wu X, Guo J, Wang D, et al. P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries[J]. Journal of Power Sources, 2015, 281: 18-26.
[16] Cabana J, Chernova N A, Xiao J, et al. Study of the transition metal ordering in layered NaxNix/2Mn1–x/2O2 (2/3 ≤ x ≤ 1) and consequences of Na/Li exchange[J]. Inorganic Chemistry, 2013, 52 (15): 8540-8550.
[17] Billaud J, Clément R J, Armstrong A R, et al. Β-NaMnO2: A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136 (49): 17243-17248.
[18] Singh G, Lopez del Amo J M, Galceran M, et al. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2[J]. Journal of Materials Chemistry A, 2015, 3 (13): 6954-6961.
[19] Ma J, Bo S-H, Wu L, et al. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries[J]. Chemistry of Materials, 2015, 27 (7): 2387-2399.
[20] 吴学航. P2型层状氧化物及混合型磷酸盐钠离子电池正极材料研究. 博士论文, 厦门大学, (2015).
[21] Duncan H, Hai B, Leskes M, et al. Relationships between Mn3+ content, structural ordering, phase transformation, and kinetic properties in LiNixMn2-xO4 cathode materials[J]. Chemistry of Materials, 2014, 26 (18): 5374-5382.
[22] Cabana J, Casas-Cabanas M, Omenya F O, et al. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4[J]. Chemistry of Materials, 2012, 24 (15): 2952-2964.
[23] Shimoda K, Murakami M, Komatsu H, et al. Delithiation/lithiation behavior of LiNi0.5Mn1.5O4 studied by In situ and ex situ 6Li,7Li NMR spectroscopy[J]. Journal of Physical Chemistry C, 2015, 119 (24): 13472-13480.
[24] 邹欢. 锂/钠离子电池高电压尖晶石和氟磷酸盐正极材料研究. 硕士论文, 厦门大学, (2015).
[25] Strobridge F C, Middlemiss D S, Pell A J, et al. Characterising local environments in high energy density Li-ion battery cathodes: A combined NMR and first principles study of LiFexCo1-xPO4[J]. Journal of Materials Chemistry A, 2014, 2 (30): 11948-11957.
[26] Chen H, Hao Q, Zivkovic O, et al. Sidorenkite (Na3MnPO4CO3): A new intercalation cathode material for Na-ion batteries[J]. Chemistry of Materials, 2013, 25 (14): 2777-2786.
[27] Strobridge F C, Clément R J, Leskes M, et al. Identifying the structure of the intermediate, Li2/3CoPO4, formed during electrochemical cycling of LiCoPO4[J]. Chemistry of Materials, 2014, 26 (21): 6193-6205.
[28] Hou X (侯旭), Zhong G M (钟贵明), Lin X C (林晓琛), et al. 23Na MAS NMR Spectroscopic Study of Na2MnPO4F as Cathode Material for Sodium-Ion Battery [J]. Journal of Electrochemisty (电化学), 2014, 20 (3): 201-205
[29] Bo S-H, Nam K-W, Borkiewicz O J, et al. Structures of delithiated and degraded LiFeBO3, and their distinct changes upon electrochemical cycling[J]. Inorganic Chemistry, 2014, 53 (13): 6585-6595.
[30] Messinger R J, Menetrier M, Salager E, et al. Revealing defects in crystalline lithium-ion battery electrodes by solid-state NMR: Applications to LiVPO4F[J]. Chemistry of Materials, 2015, 27 (15): 5212-5221.
[31] Hu Y-Y, Liu Z, Nam K-W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature materials, 2013, 12: 1130-1136.
[32] Zhong G, Bai J, Duchesne P N, et al. Copper phosphate as a cathode material for rechargeable Li batteries and its electrochemical reaction mechanism[J]. Chemistry of Materials, 2015, 27 (16): 5736-5744.
[33] Hua X, Robert R, Du L-S, et al. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery[J]. The Journal of Physical Chemistry C, 2014, 118 (28): 15169-15184.
[34] Wiaderek K M, Borkiewicz O J, Castillo-Martínez E, et al. Comprehensive insights into the structural and chemical changes in mixed-anion feof electrodes by using operando PDF and NMR spectroscopy[J]. Journal of the American Chemical Society, 2013, 135 (10): 4070-4078.
[35] Mori Y, Iriyama T, Hashimoto T, et al. Lithium doping/undoping in disordered coke carbons[J]. Journal of Power Sources, 1995, 56 (2): 205-208.
[36] Tatsumi K, Akai T, Imamura T, et al. 7Li‐nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads[J]. Journal of The Electrochemical Society, 1996, 143 (6): 1923-1930.
[37] Yamazaki S, Hashimoto T, Iriyama T, et al. Study of the states of Li doped in carbons as an anode of lib by 7 Li NMR spectroscopy[J]. Journal of molecular structure, 1998, 441 (2): 165-171.
[38] Dai Y, Wang Y, Eshkenazi V, et al. Lithium‐7 nuclear magnetic resonance investigation of lithium insertion in hard carbon[J]. Journal of The Electrochemical Society, 1998, 145 (4): 1179-1183.
[39] Saito Y, Kataoka H, Nakai K, et al. Determination of diffusion rate and accommodation state of Li in mesophase carbon for anode materials by NMR spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108 (13): 4008-4012.
[40] Dogan F, Joyce C, Vaughey J T. Formation of silicon local environments upon annealing for silicon anodes: A 29si solid state NMR study[J]. Journal of The Electrochemical Society, 2013, 160 (2): A312-A319.
[41] Cattaneo A S, Dupke S, Schmitz A, et al. Solid state NMR structural studies of the lithiation of nano-silicon:: Effects of charging capacities, host-doping, and thermal treatment[J]. Solid State Ionics, 2013, 249: 41-48.
[42] Ogata K, Salager E, Kerr C, et al. Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature communications, 2014, 5: 3217.
[43] Tang W, Liu Y, Peng C, et al. Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system[J]. Journal of the American Chemical Society, 2015, 137 (7): 2600-2607.
[44] Jung H, Allan P K, Hu Y-Y, et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries[J]. Chemistry of Materials, 2015, 27 (3): 1031-1041.
[45] Chang D, Huo H, Johnston K E, et al. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of Li–Sb electrodes[J]. Journal of Materials Chemistry A, 2015, 3 (37): 18928-18943.
[46] Fuller C, Ditzenberger J. Diffusion of lithium into germanium and silicon[J]. Physical Review, 1953, 91 (1): 193.
[47] Wang D, Chang Y-L, Wang Q, et al. Surface chemistry and electrical properties of germanium nanowires[J]. Journal of the American Chemical Society, 2004, 126 (37): 11602-11611.
[48] Li D, Seng K H, Shi D, et al. A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1 (45): 14115-14121.
[49] Winter M. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift für Physikalische Chemie International journal of research in physical chemistry and chemical physics, 2009, 223 (10-11): 1395-1406.
[50] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55 (22): 6332-6341.
[51] Agubra V A, Fergus J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162.
[52] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical reviews, 2014,
[53] Delpuech N, Dupré N, Mazouzi D, et al. Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell[J]. Electrochemistry Communications, 2013, 33 (0): 72-75.
[54] Michan A L, Leskes M, Grey C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2015,
[55] Chen S, Zhong G, Cao X, et al. An approach to probe solid electrolyte interface on Si anode by 31P MAS NMR[J]. ECS Electrochemistry Letters, 2013, 2 (12): A115-A117.
[56] Zhou L, Leskes M, Ilott A J, et al. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: Application to Li1.08Mn1.92O4 spinels[J]. Journal of Magnetic Resonance, 2013, 234 (0): 44-57.
[57] Trease N M, Zhou L, Chang H J, et al. In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations[J]. Solid State Nuclear Magnetic Resonance, 2012, 42: 62-70.
[58] Zhou L, Leskes M, Liu T, et al. Probing dynamic processes in lithium-ion batteries by In?situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes[J]. Angewandte Chemie International Edition, 2015, 54 (49): 14782-14786.
[59] Han J, Zhu J, Li Y, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chemical Communications, 2012, 48 (79): 9840-9842.
[60] Geiger C A, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50 (3): 1089-1097.
[61] Wang D, Zhong G, Dolotko O, et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes[J]. Journal of Materials Chemistry A, 2014, 2 (47): 20271-20279.
[62] Bottke P, Rettenwander D, Schmidt W, et al. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12[J]. Chemistry of Materials, 2015, 27 (19): 6571-6582.
[63] Wang D, Zhong G, Li Y, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics, 2015, 283: 109-114.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons