Abstract
As a significant protocol for materials treatment, surface modification has found broad applications in different fields including catalyst, photochemistry, and electrochemistry. Herein, we introduced the representative synthetic methodologies for the constructions of different functional materials with a focus on their core-shell structures. By taking the electrode materials in lithium ion batteries as an example, we demonstrated the importance of surface modification on the electrode materials. Different coating materials ranging from metal oxides, metal phosphates to carbon have been discussed. We also showed that an accurate control on the surface layer can be crucial for optimizing the electrochemical performances of the core-shell structured materials.
Graphical Abstract
Keywords
surface modification, electrode materials, core-shell structure, heterogeneous growth, lithium ion batteries
Publication Date
2016-06-28
Online Available Date
2016-03-07
Revised Date
2016-02-28
Received Date
2016-02-01
Recommended Citation
Shu-yi DUAN, Wei ZHANG, Jun-yu PIAO, An-min CAO, Li-jun WAN.
Uniform Nanoshells for Functional Materials:Constructions and Applications[J]. Journal of Electrochemistry,
2016
,
22(3): 260-270.
DOI: 10.13208/j.electrochem.151247
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss3/5
References
[1] Dabbousi B O, RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475.
[2] Deheer W A. The physics of simple metal-clusters – experimental aspects and simple models[J]. Reviews of Modern Physics, 1993, 65(3): 611-676.
[3] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997, 119(30): 7019-7029.
[4] Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures[J]. Nature, 2002, 420(6911): 57-61.
[5] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie-International Edition, 2004, 43(5): 597-601.
[6] Zhang Q F, Dandeneau C S, Zhou X Y, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108.
[7] Jiang J, Li Y Y, Liu J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage [J]. Advanced Materials, 2012, 24(38): 5166-5180.
[8] Lou X W, Archer L A, Yang Z C. Hollow micro-/nanostructures: synthesis and applications [J]. Advanced Materials, 2008, 20(21): 3987-4019.
[9] Liu J, Manthiram A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells [J]. Chemistry of Materials, 2009, 21(8): 1695-1707.
[10] Cho J, Kim Y W, Kim B, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles [J]. Angewandte Chemie-International Edition, 2003, 42(14): 1618-1621.
[11] Cho J. Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability [J]. Electrochimica Acta, 2003, 48(19): 2807-2811.
[12] Wang J H, Wang Y, Guo Y Z, et al. Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials [J]. Journal of Materials Chemistry A, 2013, 1(15): 4879-4884.
[13] Jung Y S, Lu P, Cavanagh A S, et al. Unexpected improved performance of ALD coated LiCoO2/graphite li-ion batteries [J]. Advanced Energy Materials, 2013, 3(2): 213-219.
[14] Choi M, Ham G, Jin B S, et al. Ultra-thin Al2O3 coating on the acid- treated 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries [J]. Journal of Alloys and Compounds, 2014, 608: 110-117.
[15] Cheng H M, Wang F M, Chu J P, et al. Enhanced cycleabity in lithium ion batteries: resulting from atomic layer deposition of Al2O3 or TiO2 on LiCoO2 electrodes [J]. Journal of Physical Chemistry C, 2012, 116(14): 7629-7637.
[16] Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coatings on nano-LiCoO2 for li-ion vehicular applications [J]. Nano Letters, 2011, 11(2): 414-418.
[17] Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in li-ion batteries [J]. ACS NANO, 2013, 7(1): 760-767.
[18] Hwang B J, Chen C Y, Cheng M Y, et al. Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region [J]. Journal of Power Sources, 2010, 195(13): 4255-4265.
[19] Zhang X F, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD [J]. Advanced Energy Materials, 2013, 3(10): 1299-1307.
[20] Leskelä M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges [J]. Angewandte Chemie-International Edition, 2003, 42(45): 5548-5554.
[21] Knez M, Nielsch K, Niinistö L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition [J]. Advanced Materials, 2007, 19(21): 3425-3438.
[22] Puurunen R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J]. Journal of Applied Physics, 2005, 97(12): 121301-1-121301-52.
[23] Marichy C, Bechelany M, Pinna N. Atomic layer deposition of nanostructured materials for energy and environmental applications [J]. Advanced Materials, 2012, 24(8): 1017-1032.
[24] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854.
[25] Cao A M, Hu J S, Wan L J. Morphology control and shape evolution in 3D hierarchical superstructures [J]. Science China-Chemistry, 2012, 55(11): 2249-2256.
[26] Noguchi T, Yamazaki I, Numataa T, et al. Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5−xTixO4[J]. Journal of Power Sources, 2007, 174(2): 359-365.
[27] Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J]. Chemistry of Materials, 2000, 12(12): 3788-3791.
[28] Zhang W, Chi Z X, Mao W X, et al. One-nanometer-precision control of Al2O3 nanoshells through a solution-based Synthesis Route[J]. Angewandte Chemie-International Edition, 2014, 126(47): 12990–12994.
[29] Sun Y K, Hong K J, Prakash J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures[J]. Electrochemistry Communications, 2002, 4(4): 344-348.
[30] Sun Y K, Yoon C S, Oh I H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures [J]. Electrochimica Acta, 2003, 48(5): 503-506.
[31] Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 566(1): 187-192.
[32] Mao W X, Zhang W, Chi Z X, et al. Core–shell structured Ce2S3@ZnO and its potential as a pigment [J]. Journal of Materials Chemistry A, 2015, 3(5): 2176-2180.
[33] Stöber W, Fink A, Bohn E J, Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
[34] Zhong A Z, Zou W, Mao W X, et al. A continuous etching process for highly-active Pd nanoclusters and their in situ stabilization [J]. RSC Advances, 2014, 4(45): 23637-23641.
[35] Li C, Zhang H P, Fu L J. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006, 51(19): 3872-3883.
[36] Kaden W E, Wu T P, Kunkel W A, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces [J]. Science, 2009, 326(5954): 826-829.
[37] Wang Z X, Liu L J, Chen L Q, et al. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries[J]. Solid State Ionics, 2002, 148(3-4): 335-342.
[38] Jung Y S, Cavanagh A S, Riley L A, et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe li-ion batteries [J]. Advanced Materials, 2010, 22(9): 2172-2176.
[39] Cho J P, Kim T J, Park B W. The effect of a metal-oxide coating on the cycling behavior at 55°C in orthorhombic LiMnO2 cathode materials [J]. Journal of the Electrochemical Society, 2002, 149(3): A228-A292.
[40] Jung Y S, Cavanagh A S, Dillon A C, et al. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition [J]. Journal of the Electrochemical Society, 2010, 157(1): A75-A81.
[41] Zhang W, Yang L P, Wu Z X, et al. Controlled formation of uniform CeO2 nanoshells in a buffer solution [J]. Chemical Communications, 2016, 52: 1420-1423.
[42] Lee J G. Kim B S, Cho J P, et al. Effect of AlPO4-nanoparticle coating concentration on high-cutoff-voltage electrochemical eperformances in LiCoO2[J]. Journal of the Electrochemical Society, 2004, 151(6): A801-A805.
[43] Yang F L, Zhang W, Chi Z X, et al. Controlled formation of core–shell structures with uniform AlPO4 nanoshells [J]. Chemical Communications, 2015, 51(14): 2943-2945.
[44] Lu Y C, Mansour A N, Yabuuchi N, et al. Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies [J]. Chemistry of Materials, 2009, 21(19): 4408-4424.
[45] Lee K T, Jeong S Y, Cho J P. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1161-1170.
[46] Lee H S, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426-430.
[47] Postma A, Yan Y, Wang Y J, et al. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules [J]. Chemistry of Materials, 2009, 21(14): 3042-3044.
[48] Kang S M, Rho J S, Choi I S, et al. Norepinephrine: Material-independent, multifunctional surface modification reagent [J]. Journal of the American Chemical Society, 2009, 131(37): 13224-13225.
[49] Chi Z X, Zhang W, Cheng F Q, et al. Optimizing the carbon coating on LiFePO4 for improved battery performance [J]. RSC Advances, 2014, 4(15): 7795-7798.
[50] Liu J, Qiao S Z, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres [J]. Angewandte Chemie-International Edition, 2011, 50(26): 5947-5951.
[51] Liu J, Yang T Y, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres [J]. Nature Communications, 2013, 4: 2798.
[52] Chi Z X, Zhang W, Wang X S, et al. Accurate surface control of core–shell structured LiMn0.5Fe0.5PO4@C for improved battery performance [J]. Journal of Materials Chemistry A, 2014, 2(41): 17359-17365.