•  
  •  
 

Authors

Kai-jian ZHU, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.;
Wen-jun LUO, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.;
Zhong-jie GUAN, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China;
Xin WEN, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China;
Zhi-gang ZOU, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China;
Wei HUANG, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.;Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China;

Corresponding Author

Wen-jun LUO;
Wei HUANG

Abstract

Photoelectrochemical water splitting can convert solar energy into hydrogen which is an ideal way to utilize and store solar energy. A p-n tandem cell is considered as the most promising solar water splitting cell due to its high theory conversion efficiency, low cost and photoelectrode material flexibility. However, solar conversion efficiency of a tandem cell is still low in the experiment because of poor performance in a single photoelectrode. In this review, we have introduced some effective approaches to improve the performances of photoelectrodes by reducing recombination of photogenerated carriers in the bulk or on the surface, and suppressing back reaction. Moreover, we have also summarized recent progress of some p-type semiconductor photocathodes, such as Si, InP, CuIn1-x GaxS(Se)2 and Cu2ZnSnS4. Accordingly, we constructed a promising p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3)photoelectrode and obtained an efficient photoelectrochemical tandem cell with low cost.

Graphical Abstract

Keywords

Photoelectrochemical water splitting cells, Photocathodes, Si, InP; CuIn1-xGaxS(Se)2; Cu2ZnSnS4

Publication Date

2016-08-29

Online Available Date

2016-05-05

Revised Date

2016-04-28

Received Date

2016-03-18

References

[1] Kundu D, Talaie E, Duffort V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54 (11): 3431-3448.

[2] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114 (23): 11636-11682.

[3] Zhang N (张宁), Liu Y-C (刘永畅), Chen C-C (陈程成), et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Cheistry (无机化学学报), 2015, 31(9): 1739-1750.

[4] Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688.

[5] Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.

[6] Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013.

[7] Xiang X D, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364.

[8] Delmas C, Braconnier J-J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3-4: 165-169.

[9] Lei Y, Li X, Liu L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides[J]. Chemistry of Materials, 2014, 26(18): 5288-5296.

[10] Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10: 74-80.

[11] Billand J, Clement R J, Armstrong A R, et al. β-NaMnO2: A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(49): 17243-17248.

[12] Su D, Wang C, Ahn H-J, et al. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance[J]. Chemistry-A European Journal, 2013. 19(33): 10884-10889.

[13] Zhao J, Zhao L, Dimov N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(5): A3077-A3081.

[14] Yabuuchi N, Yoshida H, Komaba S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries[J]. Electrochemistry, 2012, 80(10): 716-719.

[15] Komaba S, Takei C, Nakayama T, et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2[J]. Electrochemistry Communications, 2010, 12(3): 355-358.

[16] Vassilaras P, Ma X, Li X, et al. Electrochemical properties of monoclinic NaNiO2[J]. Journal of the Electrochemical Society, 2013, 160(2): A207-A211.

[17] Dong Y, Li S, Zhao K, et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4): 1267-1275.

[18] Komaba S, Yabuuchi N, Nakayama T, et al. Study on the reversible electrode reaction of Na1–xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-6220.

[19] Yuan D D, Wang Y X, Cao Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591.

[20] Oh S M, Myung S T, Yoon C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano Letters, 2014, 14(3): 1620-1626.

[21] Su J, Pei Y, Yang Z, et al. First-principles investigation on crystal, electronic structures and diffusion barriers of NaNi1/3Co1/3Mn1/3O2 for advanced rechargeable Na-ion batteries[J]. Computational Materials Science, 2015, 98: 304-310.

[22] Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517.

[23] Xu J, Lee D H, Clement R J, et al. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chemistry of Materials, 2014, 26(2): 1260-1269.

[24] Kataoka R, Mukai T, Yoshizawa A, et al. Development of high capacity cathode material for sodium ion batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2[J]. Journal of the Electrochemical Society, 2013, 160(6): A933-A939.

[25] Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(20): 5894-5899.

[26] Sauvage F, Laffont L, Tarascon J-M, et al. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2[J]. Inorganic Chemistry, 2007, 46(8): 3289-3294.

[27] Parant J-P, Olazcuaga R, Devalette M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x?1)[J]. Journal of Solid State Chemistry, 1971, 3(1): 1-11.

[28] Xu M, Niu Y, Chen C, et al. Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries[J]. RSC Advances, 2014, 4(72): 38140-38143.

[29] Cao Y L, Xiao L F, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials, 2011, 23(28): 3155-3160.

[30] Guo S, Yu H, Liu D, et al. A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries[J]. Chemical Communications, 2014, 50(59): 7998-8001.

[31] Oh S-M, Myung S-T, Hassoun J, et al. Reversible NaFePO4 electrode for sodium secondary batteries[J]. Electrochemistry Communications, 2012, 22: 149-152.

[32] Zhu Y, Xu Y, Liu Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787.

[33] Kim J, Seo D-H, Kim H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(2): 540-545.

[34] Li C, Miao X, Chu W, et al. Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8265-8271.

[35] Jian Z, Yuan C, Han W, et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2014, 24(27): 4265-4272.

[36] Plashnitsa L S, Kobayashi E, Noguchi Y, et al. Performance of NASICON symmetric cell with ionic liquid electrolyte[J]. Journal of the Electrochemical Society, 2010, 157(4): A536-A543.

[37] Duan W, Zhu Z, Li H, et al. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(23): 8668-8675.

[38] Saravanan K, Mason C W, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450.

[39] Aragon M J, Lavela P, Ortiz G F, et al. Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(2): A3077-A3083.

[40] Li H, Yu X, Bai Y, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9578-9586.

[41] Sheng J, Zang H, Tang C, et al. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Nano Energy, 2016, 24: 130-138.

[42] Ellis B L, Makahnouk W R M, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6: 749-753.

[43] Kubota K, Yokoh K, Yabuuchi N, et al. Na2CoPO4F as a high-voltage electrode material for Na-ion batteries[J]. Electrochemistry, 2014, 82(10): 909-911.

[44] Barker J, Saidi M Y, Swoyer J L, et al. A sodium-ion cell based on the fluorophosphate compound NaVPO4 F[J]. Electrochemical and Solid-State Letters, 2003, 6(1): A1-A4.

[45] Ruan Y-L, Wang K, Song S-D, et al. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries[J]. Electrochimica Acta, 2015, 160: 330-336.

[46] Shakoor R A, Seo D-H, Kim H, et al. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries[J]. Journal of Materials Chemistry, 2012, 22(38): 20535-20541.

[47] Park Y-U, Seo D-H, Kwon H-S, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): 13870-13878.

[48] Singh P, Shiva K, Celio H, et al. Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(10): 3000-3005.

[49] Qian J-F(钱江峰), Zhou M(周敏), Cao Y-L(曹余良), et al. NaxMyFe(CN)6 (M = Fe, Co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 108-112.

[50] Gocheva I D, Nishijima M, Doi T, et al. Mechanochemical synthesis of NaMF3 (M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries[J]. Journal of Power Sources, 2009, 187(1): 247-252.

[51] Nishijima M, Gocheva I D, Okada S, et al. Cathode properties of metal trifluorides in Li and Na secondary batteries[J]. Journal of Power Sources, 2009, 190(2): 558-562.

[52] Wang S, Wang L, Zhu Z, et al. All organic sodium-ion batteries with Na4C8H2O6[J]. Angewandte Chemie International Edition, 2014, 53(23): 5892-5896.

[53] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-10173.

[54] Zhu Z Q, Cheng F Y, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources, 2015, 293: 626-634.

[55] Wen Y, He K, Zhu Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033.

[56] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271-1273.

[57] Gotoh K, Ishikawa T, Shimadzu S, et al. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery[J]. Journal of Power Sources, 2013, 225: 137-140.

[58] Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867.

[59] Cao Y L, Xiao L F, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.

[60] Li W H, Zeng L C,Yang Z Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers[J]. Nanoscale, 2014, 6(2): 693-698.

[61] Zhang J-F(张京飞), Lu J(陆静), Yang X-Y(杨晓宇), et al. Synthesis of porous carbon nanosheets for application in sodium-ion battery[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 548-553.

[62] Tang K, Fu L J, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7): 873-877.

[63] Xu J T, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048.

[64] Yan Y, Yin Y-X, Guo Y-G, et al, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(8): 1301584.

[65] Chevrier V L, Ceder G, Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society, 2011, 158(9): A1011-A1014.

[66] Ellis L D, Hatchard T D, Obrovac M N. Reversible insertion of sodium in tin[J]. Journal of the Electrochemical Society, 2012, 159(11): A1801-A1805.

[67] Wang J W, Liu X H, Mao S X, et al. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction[J]. Nano Letters, 2012, 12(11): 5897-5902.

[68] Nam D-H, Kim T-H, Hong K-S, et al. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Nano, 2014, 8(11): 11824-11835.

[69] Liu Y H, Xu Y H, Zhu Y J, et al. Tin-coated viral nanoforests as sodium-ion battery anodes[J]. ACS Nano, 2013, 7(4): 3627-3634.

[70] Liu Y C, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials, 2015, 27(42): 6702-6707.

[71] Darwiche A, Marino C, Sougrati M T, et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism[J]. Journal of the American Chemical Society, 2012, 134(51): 20805-20811.

[72] He M, Kravchyk K, Walter M, et al. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk[J]. Nano Letters, 2014, 14(3): 1255-1262.

[73] Zhang N, Liu Y C, Lu Y Y, et al. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries[J]. Nano Research, 2015, 8(10): 3384-3393.

[74] Xu Y, Swaans E, Basak S, et al. Reversible Na-ion uptake in Si nanoparticles[J]. Advanced Energy Materials, 2016, 6(2): 1501436.

[75] Liu J, Wen Y R, van Aken P A, et al. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage[J]. Nano Letters, 2014, 14(11): 6387-6392.

[76] Lin Y-M, Abel P R, Gupta A, et al. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8273-8277.

[77] Ji L W, Gu M, Shao Y Y, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage[J]. Advanced Materials, 2014, 26(18): 2901-2908.

[78] Farbod B, Cui K, Kalisvaart W P, et al. Anodes for sodium ion batteries based on tin-germanium-antimony alloys[J]. ACS Nano, 2014, 8(5): 4415-4429.

[79] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate apability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.

[80] Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22): 3045-3049.

[81] Pei L, Zhao Q, Chen C, et al. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries[J]. ChemElectroChem, 2015, 2(11): 1652-1655.

[82] Zhu Y, Wen Y, Fan X, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264.

[83] Qian J F, Xiong Y, Cao Y L, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries[J]. Nano Letters, 2014, 14(4): 1865-1869.

[84] Zhang N, Han X P, Liu Y C, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): 1401123.

[85] Liu Y C, Zhang N, Yu C, et al. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries[J]. Nano Letters, 2016, 16(5): 3321-3328.

[86] Zhu C, Mu X, van Aken P A, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie International Edition, 2014, 53(8): 2152-2156.

[87] Liu Y C, Zhang N, Kang H T, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry-A European Journal, 2015, 21(33): 11878-11884.

[88] Hu Z, Zhu Z Q, Cheng F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316.

[89] Hayashi A, Noi K, Sakuda A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: 856.

[90] Richards W D, Tsujimura T, Miara L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nature Communications, 2016, 7: 11009.

[91] Zhang L, Yang K, Mi J, et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity[J]. Advanced Energy Materials, 2015, 5(24): 1501294.

[92] Kim D, Lee E, Slater M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications, 2012, 18: 66-69.

[93] Mu L, Xu S, Li Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933.

[94] Tang W, Song X, Du Y, et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(13): 4882-4892.

[95] Li S, Dong Y, Xu L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Advanced Materials, 2014, 26(21): 3545-3553.

[96] Ponrouch A, Dedryvere R, Monti D, et al. Towards high energy density sodium ion batteries through electrolyte optimization[J]. Energy & Environmental Science, 2013, 6(8): 2361-2369.

[97] Wang H(王红), Liao X(廖小珍), Xie Y(颉莹莹), et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology(储能科学与技术), 2016, 5(1): 65-68.

[98] Xu G-L, Chen Z, Zhong G-M, et al. Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16(6): 3955-3965.

[99] Qu B H, Ma C Z, Ji G, et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859.

[100] Ren W, Zheng Z, Xu C, et al. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries[J]. Nano Energy, 2016, 25: 145-153.

[101] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. The Journal of Physical Chemistry Letters, 2011, 2(20): 2560-2565.

[102] Rudola A, Saravanan K, Devaraj S, et al. Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries[J]. Chemical Communications, 2013, 49(67): 7451-7453.

[103] Ye H, Wang Y, Zhao F, et al. Iron-based sodium-ion full batteries[J]. Journal of Materials Chemistry A, 2016, 4(5): 1754-1761.

[104] Fu S, Ni J, Xu Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Letters, 2016, 16(7): 4544-4551.

[105] Cao Y(曹翊), Wang Y(王永刚), Wang Q(王青), et al. Development of aqueous sodium ion battery[J]. Energy Storage Science and Technology(储能科学与技术), 2016, 5(3): 317-323.

[106] Li Z, Young D, Xiang K, et al. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3(3): 290-294.

[107] Zhang Q, Liao C, Zhai T, et al. A high rate 1.2 V aqueous sodium-ion battery based on all NASICON structured NaTi2(PO4)3 and Na3V2(PO4)3[J]. Electrochimica Acta, 2016, 196: 470-478.

[108] Lalere F, Leriche J B, Courty M, et al. An all-solid state NASICON sodium battery operating at 200 °C[J]. Journal of Power Sources, 2014, 247: 975-980.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.