•  
  •  
 

Corresponding Author

Li-qiang MAI(mlq518@whut.edu.cn)

Abstract

Abstract: One-dimensional nanomaterials have been widely studied in energy storage and conversion fields because of their unique structure and physicochemical properties. Sodium-ion batteries are highly promising and attractive for large-scale energy storage due to the truly abundant sodium resources and low cost. With the growing demand of energy and deepening of research, the evolution of structures and properties of one-dimensional nanomaterials are also experiencing from simplicity to complexity and from ordinary to excellence. Therefore, constructing complex superior one-dimensional nanomaterials has become one of the hotspot in energy storage. Based on the new advance in this field and Mai group’s work, this review focuses on the construction mechanism and sodium storage performance of complex one-dimensional nanomaterials. These nanomaterials include bundled nanowires, hierarchical zigzag nanowires, mesoporous nanotubes, pea-like nanotubes and ion pre-intercalated nanobelts, which are constructed by organic acid-assisted method, hydrothermal method and electrospinning method, etc. Meanwhile, the relationships between structure and sodium storage performance of complex one-dimensional nanomaterials are also discussed. The above mentioned progresses provide important guidance and assistance for the further development of one-dimensional nanomaterials.

Graphical Abstract

Keywords

one-dimensional nanomaterial, complex structure, construction mechanism, sodium storage performance

Publication Date

2016-10-28

Online Available Date

2016-10-09

Revised Date

2016-09-28

Received Date

2016-06-07

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.