Abstract
Owing to its high theoretical specific capacity (4200 mAh·g-1), silicon is a promising candidate to replace graphite as the anode in lithium ion batteries (LIBs). However, low intrinsic electric conductivity and dramatic volume change (~ 300%) during the process of lithiation and delithiation result in electrode pulverization and capacity loss with cycling, accordingly, the application of silicon as an anode in LIBs has been severely hindered. We will discuss the structure of silicon electrode including synthesis of Si-based composites,the selection of binder for silicon and the fabrication of binder-free Si-based electrode, as well as the electrolyte additive to improve the cycle performance of the battery.
Graphical Abstract
Publication Date
2016-10-28
Online Available Date
2016-09-12
Revised Date
2016-09-11
Received Date
2016-05-11
Recommended Citation
Ding-qiong CHEN, Yang YANG, Qiu-li LI, Jin-bao ZHAO.
Research Progress of Si-based Anode Materials for Lithium-ion Batteries[J]. Journal of Electrochemistry,
2016
,
22(5): 489-498.
DOI: 10.13208/j.electrochem.160543
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss5/6
References
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Dunn B, Kamath H, Tarascon J M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928-935. [3] Brandt K. Historical Development of Secondary Lithium Batteries[J]. Solid State Ionics, 1994, 69(3-4): 173-183. [4] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2008, 47(16): 2930-2946. [5] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1-2): 31-50. [6] Kasavajjula U, Wang C, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2): 1003-1039. [7] Li J, Dahn J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3): A156-A161. [8] Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society, 2004, 151(6): A838-A842. [9] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5): A93-A96. [10] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15): 5062-5066. [11] Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid State Letters, 2001, 4(9): A137-A140. [12] Graetz J, Ahn C C, Yazami R, et al. Highly reversible lithium storage in nanostructured silicon[J]. Electrochemical and Solid State Letters, 2003, 6(9): A194-A197. [13] Huang K L(黄可龙),Wang Z X(王兆翔),Liu S Q(刘素琴). 锂离子电池原理与关键技术[M]. Beijing: Chemical Industry Press (化学工业出版社), 2007: 232-240. [14] Luo F, Chu G, Xia X X, et al. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J]. Nanoscale, 2015, 7(17): 7651-7658. [15] Jaumann T, Balach J, Klose M, et al. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24956-24967. [16] Liu X H, Zhong L, Huang S, et al. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation[J]. Acs Nano, 2012, 6(2): 1522-1531. [17] Ryu I, Choi J W, Cui Y, et al. Size-dependent fracture of Si nanowire battery anodes[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(9): 1717-1730. [18] Li H, Huang X J, Chen L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4): 181-191. [19] Ng S H, Wang J, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2006, 45(41): 6896-6899. [20] Yue L, Zhang W H, Yang J F, et al. Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 125: 206-217. [21] Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2008, 47(9): 1645-1649. [22] Chen S, Gordin M L, Yi R, et al. Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12741-12745. [23] Liu N, Wu H, McDowell M T, et al. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes[J]. Nano Letters, 2012, 12(6): 3315-3321. [24] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192. [25] Jia H P, Gao P F, Yang J, et al. Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039. [26] Liu J, Kopold P, van Aken P A, et al. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries[J]. Angewandte Chemie-International Edition, 2015, 54(33): 9632-9636. [27] Shao D, Tang D P, Yang J W, et al. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 297: 344-350. [28] He Y S, Gao P F, Chen J, et al. A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries[J]. Rsc Advances, 2011, 1(6): 958-960. [29] Wu J X, Qin X Y, Zhang H R, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84: 434-443. [30] Li H, Lu C, Zhang B. A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance[J]. Electrochimica Acta, 2014, 120: 96-101. [31] Chen D Q, Liao W J, Yang Y, et al. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode[J]. Journal of Power Sources, 2016, 315: 236-241. [32] Li Q L, Chen D Q, Li K, et al. Electrostatic self-assembly bmSi@C/rGO composite as anode material for lithium ion battery[J]. Electrochimica Acta, 2016, 202: 140-146. [33] Feng X J, Yang J, Bie Y T, et al. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries[J]. Nanoscale, 2014, 6(21): 12532-12539. [34] Chen Z H, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers[J]. Electrochemistry Communications, 2003, 5(11): 919-923. [35] Zheng H H, Yang R Z, Liu G, et al. Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode[J]. Journal of Physical Chemistry C, 2012, 116(7): 4875-4882. [36] Lux S F, Schappacher F, Balducci A, et al. Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2010, 157(3): A320-A325. [37] Liu W R, Yang M H, Wu H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid State Letters, 2005, 8(2): A100-A103. [38] Lee J H, Paik U, Hackley V A, et al. Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(1): 612-616. [39] Magasinski A, Zdyrko B, Kovalenko I, et al. Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid[J]. Acs Applied Materials & Interfaces, 2010, 2(11): 3004-3010. [40] Chong J, Xun S D, Zheng H H, et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196(18): 7707-7714. [41] Komaba S, Ozeki T, Okushi K. Functional interface of polymer modified graphite anode[J]. Journal of Power Sources, 2009, 189(1): 197-203. [42] Komaba S, Ozeki T, Yabuuchi N, et al. Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries[J]. Electrochemistry, 2011, 79(1): 6-9. [43] Komaba S, Yabuuchi N, Ozeki T, et al. Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries[J]. Journal of Physical Chemistry C, 2012, 116(1): 1380-1389. [44] Kovalenko I, Zdyrko B, Magasinski A, et al. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries[J]. Science, 2011, 334(6052): 75-79. [45] Liu J, Zhang Q, Zhang T, et al. A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries[J]. Advanced Functional Materials, 2015, 25(23): 3599-3605. [46] Maranchi J P, Hepp A F, Evans A G, et al. Interfacial properties of the a-Si/Cu : active-inactive thin-film anode system for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(6): A1246-A1253. [47] Li H X, Cheng F Y, Zhu Z Q, et al. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries[J]. Journal of Alloys and Compounds, 2011, 509(6): 2919-2923. [48] Wang W, Kumta P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes[J]. Acs Nano, 2010, 4(4): 2233-2241. [49] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. [50] Yang Y, Chen D Q, Liu B, et al. Binder-Free Si Nanoparticle Electrode with 3D Porous Structure Prepared by Electrophoretic Deposition for Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces, 2015, 7(14): 7497-7504. [51] Yang Y, Li J Q, Chen D Q, et al. Binder-Free Carbon-Coated Silicon-Reduced Graphene Oxide Nanocomposite Electrode Prepared by Electrophoretic Deposition as a High-Performance Anode for Lithium-Ion Batteries[J]. Chemelectrochem, 2016, 3(5): 757-763. [52] Roy A K, Zhong M J, Schwab M G, et al. Preparation of a Binder-Free Three-Dimensional Carbon Foam/Silicon Composite as Potential Material for Lithium Ion Battery Anodes[J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7343-7348. [53] Lee J T, Lin Y W, Jan Y S. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 132(1-2): 244-248. [54] Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416. [55] Ding N, Xu J, Yao Y X, et al. Improvement of cyclability of Si as anode for Li-ion batteries[J]. Journal of Power Sources, 2009, 192(2): 644-651. [56] Nakai H, Kubota T, Kita A, et al. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes[J]. Journal of the Electrochemical Society, 2011, 158(7): A798-A801. [57] Etacheri V, Haik O, Goffer Y, et al. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes[J]. Langmuir, 2012, 28(1): 965-976. [58] Chen L B, Wang K, Xie X H, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. Journal of Power Sources, 2007, 174(2): 538-543. [59] Choi N S, Yew K H, Lee K Y, et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources, 2006, 161(2): 1254-1259.Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons