Abstract
Silicon(Si), with the highest specific capacity currently known, is a promising anode material for Li-ion battery. However, in the charging and discharging process, with Li atoms inserting into and breaking out of the Si crystal lattices, the Si anode undergoes enormous volume expansion and contraction, ending in pulverization. The fact that the specific capacity of bulk Si anodes drop quickly is a challenging problem. In this review, we summarize recent progresses in Si anode. We concern about the nanostructure of silicon, cooperation of silicon with other additives and macrostructure design of anodes. We discuss strengths and shortcomings of different methods, considering both electrochemical performance and mass production feasibility.
Graphical Abstract
Keywords
lithium-ion battery, silicon anode, nanostructure, cycle life, solid electrolyte interface
Publication Date
2016-10-28
Online Available Date
2016-09-28
Revised Date
2016-09-28
Received Date
2016-05-30
Recommended Citation
Ze-liang GUO, Hui WU.
Research Progress in Cycle Stability of Silicon Based Li-Ion Battery Anodes[J]. Journal of Electrochemistry,
2016
,
22(5): 499-512.
DOI: 10.13208/j.electrochem.160546
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss5/7
References
[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[3] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced materials, 1998, 10(10): 725-763.
[4] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(1): 87-90.
[5] Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4): 725-729.
[6] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377.
[7] Szczech J R, Jin S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011, 4(1): 56-72.
[8] Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
[9] Wu H, Zheng G, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano letters, 2012, 12(2): 904-909.
[10] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature nanotechnology, 2012, 7(5): 310-315.
[11] Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano letters, 2011, 11(7): 2949-2954.
[12] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.
[13] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531.
[14] Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J]. Chemical Communications, 2010, 46(12): 2025-2027.
[15] Jia H, Gao P, Yang J, et al. Novel Three‐Dimensional Mesoporous Silicon for High Power Lithium‐Ion Battery Anode Material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039.
[16] Jung H, Park M, Yoon Y G, et al. Amorphous silicon anode for lithium-ion rechargeable batteries[J]. Journal of power sources, 2003, 115(2): 346-351.
[17] Luo X, Zhang H, Pan W, et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery[J]. Small, 2015, 11(45): 6009-6012.
[18] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(5348): 208-211.
[19] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673.
[20] Zhao C, Luo X, Chen C, et al. Sandwich electrode designed for high performance lithium-ion battery[J]. Nanoscale, 2016, 8(18): 9511-9516.
[21] Berman D, Erdemir A, Sumant A V. Graphene: a new emerging lubricant[J]. Materials Today, 2014, 17(1): 31-42.
[22] Wu H, Yu G, Pan L, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature communications, 2013, 4.
[23] Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature chemistry, 2013, 5(12): 1042-1048.
[24] Yoo M, Frank C W, Mori S. Interaction of poly (vinylidene fluoride) with graphite particles. 1. Surface morphology of a composite film and its relation to processing parameters[J]. Chemistry of materials, 2003, 15(4): 850-861.
[25] Yoo M, Frank C W, Mori S, et al. Interaction of poly (vinylidene fluoride) with graphite particles. 2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance[J]. Chemistry of materials, 2004, 16(10): 1945-1953.
[26] Mazouzi D, Lestriez B, Roue L, et al. Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218.
[27] Magasinski A, Zdyrko B, Kovalenko I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS applied materials & interfaces, 2010, 2(11): 3004-3010.
[28] Bridel J S, Azais T, Morcrette M, et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chemistry of materials, 2009, 22(3): 1229-1241.
[29] Chen Z, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers[J]. Electrochemistry communications, 2003, 5(11): 919-923.
[30] Liu W R, Yang M H, Wu H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2): A100-A103.
[31] Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79.
[32] Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35): 8762-8767.
[33] Ryou M H, Kim J, Lee I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced materials, 2013, 25(11): 1571-1576.
[34] Cui L F, Hu L, Wu H, et al. Inorganic glue enabling high performance of silicon particles as lithium ion battery anode[J]. Journal of The Electrochemical Society, 2011, 158(5): A592-A596.
[35] Park S J, Zhao H, Ai G, et al. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2565-2571.
[36] Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on SEI formation[J]. ACS applied materials & interfaces, 2016, 8(19): 12211–12220.
[37] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[38] Cho J H, Picraux S T. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation[J]. Nano letters, 2014, 14(6): 3088-3095.
[39] Wang X, Wu X L, Guo Y G, et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Advanced Functional Materials, 2010, 20(10): 1680-1686.
[40] Xu S, Hessel C M, Ren H, et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energy & Environmental Science, 2014, 7(2): 632-637.
[41] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[42] Fan Y, Zhang Q, Xiao Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology[J]. Carbon, 2013, 59: 264-269.
[43] Yang J, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
[44] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature nanotechnology, 2014, 9(3): 187-192.
[45] Zhu B, Liu N, McDowell M, et al. Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery[J]. Nano Energy, 2015, 13: 620-625.
[46] Zheng G, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature nanotechnology, 2014, 9(8): 618-623.
[47] Yan K, Lee H W, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano letters, 2014, 14(10): 6016-6022.
[48] Li J, Dudney N J, Nanda J, et al. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes[J]. ACS applied materials & interfaces, 2014, 6(13): 10083-10088.
[49] Wang H Y, Wang F M. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode[J]. Journal of Power Sources, 2013, 233: 1-5.
[50] Xiao X, Lu P, Ahn D. Ultrathin multifunctional oxide coatings for lithium ion batteries[J]. Advanced Materials, 2011, 23(34): 3911-3915.
[51] Martin L, Martinez H, Ulldemolins M, et al. Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive[J]. Solid State Ionics, 2012, 215: 36-44.
[52] Profatilova I A, Stock C, Schmitz A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222: 140-149.
[53] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[54] Zhou M, Li X, Wang B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano letters, 2015, 15(9): 6222-6228.
[55] Yang J, Takeda Y, Imanishi N, et al. SiOx-based anodes for secondary lithium batteries[J]. Solid State Ionics, 2002, 152: 125-129.
[56] Guo B, Shu J, Wang Z, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10(12): 1876-1878.
[57] Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the electrochemical society, 2005, 152(10): A2089-A2091.
[58] Li X, Dhanabalan A, Meng X, et al. Nanoporous tree-like SiO2 films fabricated by sol-gel assisted electrostatic spray deposition[J]. Microporous and Mesoporous Materials, 2012, 151: 488-494.
[59] Yao Y, Zhang J, Xue L, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(23): 10240-10243.
[60] Yan N, Wang F, Zhong H, et al. Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries[J]. Scientific reports, 2013, 3: 1568.
Favors Z, Wang W, Bay H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific reports, 2014, 4: 4605.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons