•  
  •  
 

Corresponding Author

Ming-mei WU(ligaoren@mail.sysu.edu.cn);
Gao-ren LI(ligaoren@mail.sysu.edu.cn)

Abstract

Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel NiO@Co3O4 hollow spheres (HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated NiO@Co3O4 HSs showed high specific surface area of 219.68 m2·g-1, and significant enhancement in ion diffusion and utilization rate, as well as effective prevention in nanoparticle agglomeration. When used as electrodes, the NiO@Co3O4 HSs exhibited a large specific capacitance of 1140.9 F·g-1 at the scan rate of 5 mV·s-1 and excellent cycling stability, suggesting a promising application for supercapacitors.

Graphical Abstract

Publication Date

2016-10-28

Online Available Date

2016-08-01

Revised Date

2016-07-20

Received Date

2016-05-23

References

(1) Chen, Z.; Augustyn, V.; Wen, J; et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. [J]. Advanced Materials, 2011, 23, 791-795.

(2) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. [J]. Nano Letters, 2011, 11, 1215-1220.

(3) Aricò, A. S.; Bruce, P.; Scrosati, B.; et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. [J]. Nature Materials, 2005, 4, 366–377.

(4) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. [J]. Advanced Materials, 2008, 20, 2878-2887.

(5) Peng, C.; Zhang, S. W.; Zhou, X. H.; et al. Unequalisation of Electrode Capacitances for Enhanced Energy Capacity in Asymmetrical Supercapacitors. [J]. Energy & Environmental Science, 2010, 3, 1499-1502.

(6) Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. [J]. Chemical Society Reviews, 2009, 38, 2520-2531.

(7) Peng, X.; Peng, L.; Wu, C.; et al. Two Dimensional Nanomaterials for Flexible Supercapacitors. [J]. Chemical Society Reviews, 2014, 43, 3303-3323.

(8) Rakhi, R. B.; Chen, W.; Cha, D.; et al. Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. [J]. Nano Letters, 2012, 12, 2559-2567.

(9) Cheng, Y.; Lu, S.; Zhang, H.; et al. Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. [J]. Nano Letters, 2012, 12, 4206–4211.

(10) Maruyama, H.; Nakano, H.; Nakamoto, M.; et al. High-Power Electrochemical Energy Storage System Employing Stable Radical Pseudocapacitors. [J]. Angewandte Chemie International Edition, 2014, 126, 1348–1352.

(11) Richey, F. W.; Dyatkin, B.; Gogotsi, Y.; et al. Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. [J]. Journal of the American Chemical Society, 2013, 135, 12818-12826.

(12) Lee, C. Y.; Bond, A. M. Revelation of Multiple Underlying RuO2 Redox Processes Associated with Pseudocapacitance and Electrocatalysis. [J]. Langmuir, 2010, 26, 16155-16162.

(13) Chen, L. Y.; Hou, Y.; Kang, J. L.; et al. Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold. [J]. Advanced Energy Materials, 2013, 3, 851-856.

(14) Ding, S. J.; Zhu, T.; Chen, J.; et al. Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. [J]. Journal of Materials Chemistry, 2011, 21, 6602-6606.

(15) Lee, J. W.; Ahn, T.; Kim, J. H.; et al. Nanosheets Based Mesoporous NiO Microspherical Structures via Facile and Template-Free Method for High Performance Supercapacitors. [J]. Electrochimica Acta, 2011, 56, 4849-4857.

(16) Wang, X. Y.; Wang, X. Y.; Yi, L. H.; et al. Preparation and Capacitive Properties of the Core–Shell Structure Carbon Aerogel Microbeads- Nanowhisker-Like NiO Composites. [J]. Journal of Power Sources, 2013, 224, 317-323.

(17) Deori, K.; Ujjain, S. K.; Sharma, R. K.; et al. Morphology Controlled Synthesis of Nanoporous Co3O4 Nanostructures and Their Charge Storage Characteristics in Supercapacitors. [J]. ACS Applied Materials & Interfaces, 2013, 5, 10665-10672.

(18) Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; et al. Porous Hollow Co3O4 with Rhombic Dodecahedral Structures for High-Performance Supercapacitors. [J]. Nanoscale, 2014, 6, 14354-14359.

(19) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; et al. Freestanding Co3O4 Nanowire Array for High Performance Supercapacitors. [J]. RSC Advances, 2012, 2, 1835-1841.

(20) Zhong, J. H.; Wang, A. L.; Li, G. R.; et al. Co3O4/Ni(OH)2 Composite Mesoporous Nanosheet Networks as a Promising Electrode for Supercapacitor Applications. [J]. Journal of Materials Chemistry, 2012, 22, 5656- 5665.

(21) Liu, M. C.; Kong, L. B.; Lu, C.; et al. A Sol–Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. [J]. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636.

(22) Shen, L. F.; Yu, L.; Yu, X. Y.; et al. Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. [J]. Angewandte Chemie International Edition, 2015, 54, 1868-1872.

(23) Li, W. Y.; Xu, K. B.; Song, G. S.; et al. Facile Synthesis of Porous MnCo2O4.5 Hierarchical Architectures for High-Rate Supercapacitors. [J]. CrystEngComm, 2014, 16, 2335-2339.

(24) Zhu, D. D.; Wang, Y. D.; Yuan, G. L.; et al. High-Performance Supercapacitor Electrodes Based on Hierarchical Ti@Mno2 Nanowire Arrays. [J]. Chemical Communications, 2014, 50, 2876-2878.

(25) Yuan, C. Z.; Zhang, X. G.; Su, L. H.; et al. Facile Synthesis and Self-Assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors. [J]. Journal of Materials Chemistry, 2009, 19, 5772-5777.

(26) Liang, K.; Tang, X. Z.; Hu, W. C. High-Performance Three-Dimensional Canoporous NiO Film as A Supercapacitor Electrode. [J]. Journal of Materials Chemistry, 2012, 22, 11062-11067.

(27) Cao, C. Y.; Guo, W.; Cui, Z. M.; et al. Microwave-assisted Gas/Liquid Interfacial Synthesis of Flowerlike NiO Hollow Nanosphere Precursors and Their Application as Supercapacitor Electrodes. [J]. Journal of Materials Chemistry, 2011, 21, 3204-3209.

(28) Wang, D. W.; Li, F.; Liu, M.; et al. 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. [J]. Angewandte Chemie International Edition, 2008, 47, 373-376.

(29) Wang, X.; Yan, C. Y.; Sumboja, A.; et al. High Performance Porous Nickel Cobalt Oxide Nanowires for Asymmetric Supercapacitor. [J]. Nano Energy, 2014, 3, 119-126.

(30) Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. [J]. Nanoscale, 2014, 6, 3638–3646.

(31) Lu, X. F.; Wu, D. J.; Li, R. Z.; et al. Hierarchical NiCo2O4 nanosheets @hollow microrod arrays for high-performance asymmetric supercapacitors. [J]. Journal of Materials Chemistry A, 2014, 2, 4706-4713.

(32)Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. [J]. Journal of Materials Chemistry, 2011, 21, 10504-10511.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.