•  
  •  
 

Corresponding Author

Yong-feng LIU(mselyf@zju.edu.cn)

Abstract

Crystalline Li12Si7 is successfully synthesized by heating the mixture of LiH and Si with a molar ratio of 12:7, which avoids the huge difference of the melting points between Li and Si. The electrochemical performance and lithium storage mechanism of the as-prepared Li12Si7 are studied in this work. It is found that only a change in cell volume takes place without a phase change during the lithiation/delithiation of Li12Si7 at a voltage range of 0.02 ~ 0.6 V, exhibiting a solid-solution lithium storage mechanism. Such a lithium storage process effectively retards the volume effect caused by the phase change during lithiation/delithiation of Si-based anode. This induces significantly the improved electrochemical properties of crystalline Li12Si7 while cycling at 0.02 ~ 0.6 V. The first Coulombic efficiency of crystalline Li12Si7 is determined to be as high as 100%, and the capacity retention is 74% after 30 cycles, which are distinctly higher than those of Si anode (55% and 37%, respectively) under identical conditions.

Graphical Abstract

Keywords

lithium-ion batteries, anode materials, Li-Si alloys, electrochemical properties, lithium storage mechanism

Publication Date

2016-10-28

Online Available Date

2016-07-28

Revised Date

2016-05-19

Received Date

2016-05-03

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.