•  
  •  
 

Corresponding Author

Zhong-qun TIAN(zqtian@xmu.edu.cn)

Abstract

In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of Ag@Pd@Pt nanoparticles was similar to that of the Au@Pd@Pt nanoparticles. The relationship between the changing specific surface area and the electrocatalytic activity behavior of Ag@Pd@Pt nanoparticles in formic acid was also studied. The price of Ag@Pd@Pt nanoparticles with Ag core of 9 nm supported by activated carbon was ~ 220 times lower than that of 55 nm Au@Pd@Pt nanoparticles based on the similar electocatalytic activity being obtained.

Graphical Abstract

Keywords

Au@Pd@Pt nanoparticles, tunable shell thickness, electrocatalytic oxidation of formic acid

Publication Date

2016-12-28

Online Available Date

2016-12-02

Revised Date

2016-11-28

Received Date

2016-09-23

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.