Abstract
In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of Ag@Pd@Pt nanoparticles was similar to that of the Au@Pd@Pt nanoparticles. The relationship between the changing specific surface area and the electrocatalytic activity behavior of Ag@Pd@Pt nanoparticles in formic acid was also studied. The price of Ag@Pd@Pt nanoparticles with Ag core of 9 nm supported by activated carbon was ~ 220 times lower than that of 55 nm Au@Pd@Pt nanoparticles based on the similar electocatalytic activity being obtained.
Graphical Abstract
Keywords
Au@Pd@Pt nanoparticles, tunable shell thickness, electrocatalytic oxidation of formic acid
Publication Date
2016-12-28
Online Available Date
2016-12-02
Revised Date
2016-11-28
Received Date
2016-09-23
Recommended Citation
Xiao-dong LIN, Du-hong CHEN, Zhong-qun TIAN.
Syntheses of Ag@Pd@Pt Nanoparticles with Tunable Shell Thickness for Electrochemical Oxidation of Formic Acid[J]. Journal of Electrochemistry,
2016
,
22(6): 570-576.
DOI: 10.13208/j.electrochem.160569
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol22/iss6/4
References
[1] Jahnke T, Futter G, Latz A, et al. Performance and degradation of proton exchange membrane fuel cells: State of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304: 207-233.
[2] Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochemical and Solid State letters, 2004, 7(1): A19-A22.
[3] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200.
[4] Sommer E M, Vargas J V C, Martins L S, et al. The maximization of an alkaline membrane fuel cell (AMFC) net power output[J]. International Journal Energy Research, 2016, 40(7): 924-939.
[5] Yu X, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.
[6] Park I S, Lee K S, Choi J H, et al. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation[J]. Journal of Physical Chemistry C 2007, 111(51): 19126-19133.
[7] Chen W, Kim J, Sun S, et al. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid[J]. Langmuir, 2007, 23(22): 11303-11310.
[8] Li D, Meng F, Wang H, et al. Nanoporous AuPt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation[J]. Electrochimica Acta 2016,190 (0013-4686): 852-861.
[9] Zhang Z, Wang Y, Wang X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid[J]. Nanoscale, 2011, 3(4):1663-1674.
[10] Zhang H, Wang C, Wang J, et al. Carbon-supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation[J]. Journal of Physical Chemistry C, 2010, 114(14): 6446-6451.
[11] Du C, Chen M, Wang W, et al. Nanoporous PdNi Alloy Nanowires As Highly Active Catalystsfor the Electro-Oxidation of Formic Acid[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 105-109.
[12] Zhou Y, Du C, Han G, et al. Ultra-low Pt decorated PdFe alloy nanoparticles for formic acid electro-oxidation[J]. Electrochimica Acta, 2016, 217: 203-209.
[13] Al-Akraa I M, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Synergistic catalytic enhancement of formic acid electro-oxidation at core-shell Pd/Pt nanocatalysts[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1789-1794.
[14] Wang S, Yang G, Yang S. Pt-Frame@Ni quasi core-shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution[J]. The Journal of Physical Chemistry C, 2015, 119(50): 27938-27945.
[15] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87.
[16] Fang P-P, Duan S, Lin X-D, et al. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity[J]. Chemical Science, 2011, 2(3): 531-539.
[17] Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method[J]. The Journal of Physical Chemistry B, 2003, 108(3): 945-951.
[18] Xia B Y, Wu H B, Wang X, et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 2012, 134(34): 13934-13937.
[19] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460.
[20] Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302-307.
[21] Zhang S, Metin Ã, Su D, et al. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid[J]. Angewandte Chemie International Edition, 2013, 52(13): 3681-3684.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons