•  
  •  
 

Corresponding Author

Li-xu LEI(lixu.lei@seu.edu.cn)

Abstract

Electrochemical reduction of carbon dioxide (CO2) was studied in the H-type electrolytic cell. It was found that the voltage between the cathode and the anode would increase during the long time electrolysis process, for this reason the electrolytic process would be unsustainable. After the experimental investigations carried out by constant potential electrolysis, constant current electrolysis, pH test and KHCO3 concentration analysis of anode electrolyte before and after the electrolysis, the increase in cell voltage might be caused by the following process: H+, that was generated from the anodic oxygen evolution reaction, reacted with HCO3- to form water and CO2, and the HCO3-in the anode chamber was consumed; then K+ in the anode chamber was forced to spread into the cathode chamber which led to the decrease of the electrolyte concentration in the anode chamber. Therefore, the conductivity of the electrolyte solution in the anode chamber decreased, resulting in the rise of the anode potential. This phenomenon may happen in the alkaline electrolyte in an anode cell, therefore, in order to ensure the electrolysis process sustainable and keep high energy conversion efficiency, the anode electrolyte cannot be any alkaline substance.

Graphical Abstract

Keywords

H-type electrolytic cell, proton exchange membrane, carbon dioxide, electrochemical reduction, oxygen evolution

Publication Date

2017-02-28

Online Available Date

2016-06-20

Revised Date

2016-06-14

Received Date

2016-01-21

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.