Abstract
To improve the specific capacity and cycle stability of lithium-sulfur (Li-S) battery, a TiC/Celgard coating separator was developed and its performance in Li-S battery was investigated. The electrochemical test results confirmed that the TiC coating layer could significantly increase the capacity and cycle stability. At a high rate of 2C, it still delivered the capacity of 650 mAh?g-1. At 0.5C, the specific capacity was maintained at 841.3 mAh?g-1 after 100 cycles.
Graphical Abstract
Keywords
Li-S battery, TiC, Coating separator
Publication Date
2017-02-28
Online Available Date
2016-09-28
Revised Date
2016-08-10
Received Date
2016-06-06
Recommended Citation
Jian-hua FANG, Yong CAO, Mao-ping YANG, Ming-sen ZHENG, Quan-feng DONG.
An Investigation in the Performance of Lithium Sulfur Battery with a TiC Coated Separator[J]. Journal of Electrochemistry,
2017
,
23(1): 86-90.
DOI: 10.13208/j.electrochem.160606
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss1/12
References
1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick et al. Li-O2 and Li-S batteries with high energy storage [J], Nature materials, 2012, 11(1): 19-29.
2. Schuster, J., He, G., Nazar, L. F. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithiumsulfur batteries[J]. Angew. Chem. Inter. Ed., 2012, 51(15): 3591-35953.
3. N. Jayaprakash, J. Shen, L. A. Archer, et al. Porous Hollow Carbon@ Sulfur Composites for High‐Power LithiumSulfur Batteries [J]. Angew. Chem., 2011, 123 (96): 6026-6030.
4. Zhang, C., Wu, H. B., Lou, X. W. D. et al. Confining Sulfur in Double-ShelledHollow Carbon Spheres for LithiumSulfur Batteries[J]. Angew. Chem., 2012, 124(38):9730-97335.
5. Wang, J., Chen, J., Konstantinov, K., et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochim. Acta, 2006, 51(22): 4634-4638.
6. Song, M.-S., Han, S.-C., Kim, H.-S.,et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries[J]. J. Electrochem. Soc., 2004, 151(6): A791-A795.
7. J.-J. Chen, R.-M. Yuan, Q.-F. Dong, et al. Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in LiS Battery [J]. Chem. Mater., 2015, 27(6): 2048-2055.
8. Cao, Yong, Li, Xi-long, Quan-feng Dong, et al. Ultra-high Rates and Reversible Capacity of Li-S Battery with a Nitrogen-doping Conductive Lewis Base Matrix [J]. Electrochimica Acta, 2016,192: 467-474.
9. Tao, X., Wang, J., Ying, Z., et al. Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n1 Nanomaterials for Improving LithiumSulfur Batteries [J]. Nano Letters, 2014, 14(9): 5288-5294.
11. Z. W. Seh, P.-C. Hsu, Y. Cui, et al. SulphurTiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithiumsulphur batteries [J]. Nat. commun., 2013, 4: doi:10.1038/ncomms2327.
12. Q. Pang, D. Kundu, M. Cuisinier and L. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries [J]. Nat. commun., 2014, 5. doi:10.1038/ncomms5759.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons