•  
  •  
 

Corresponding Author

Xin-sheng Zhang(xszhang@ecust.edu.cn)

Abstract

The α-Fe2O3 nanoparticles containing oxygen vacancies were synthesized in atmospheric N2 by dip-dropping method without a high vacuum employed before annealing. The influences of annealing atmosphere and Sn-doping on the photocatalytic performance of α-Fe2O3 nanoparticles were studied by annealing the photocatalyst in N2 or air and adding SnCl4 to the precursor directly. The results showed that the current density of Sn-doping α-Fe2O3 annealed in N2 at 550 °C and 1.23 V (vs. RHE) was 35 times greater than that of pristine α-Fe2O3 annealed in N2 at 550 °C and 15 times greater than that of Sn-doping α-Fe2O3 annealed in air at 550 °C, which indicated that both Sn-doping and annealing in N2 were indispensible to obtain a good performance for α-Fe2O3 nanoparticles. Mott-Schottky curves and electrochemical impedance spectroscopic data proved that both Sn-doping and oxygen vacancy could lead to the increase of the donors concentration and conductivity, which resulted in the enhanced performance of α-Fe2O3 nanoparticles. The photocatalytic performance tested in the electrolyte containing sacrifice solvent confirmed that the Sn-doping could facilitate the surface reaction, which was another key factor contributed to the enhanced performance of α-Fe2O3 nanoparticles.

Graphical Abstract

Keywords

α-Fe2O3 photocatalyst, oxygen vacancy, Sn doping, surface reaction rate

Publication Date

2017-02-28

Online Available Date

2016-05-18

Revised Date

2016-05-06

Received Date

2016-04-12

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.