Abstract
In this work, the solid reference electrode was assemblied by using the electrochemically synthesized manganese dioxide (MnO2) (EMD) powder, gel electrolyte and thin mortar layer for the durability evaluation of concrete. The EMD reference electrode exhibited higher potential stability (< 10 mV drift) than the chemically synthesied MnO2 (CMD) based on half year potential tests in the saturated Ca(OH)2 solution and hardened mortar. In addition, the EMD electrode was almost insensitive to the presences of chloride ion and corrosion inhibitor. Electrochemical impedance and polarization curves indicate that the EMD electrode had lower charge transfer resistance,higher exchange current density and lower temperature coefficient than the CMD electrode. The EMD electrode could be a potential candidate as the long-term reference electrode for the durability management of concrete infrastructure.
Graphical Abstract
Keywords
MnO2, Reference electrode; Concrete;Electrode potential
Publication Date
2017-02-28
Online Available Date
2016-05-18
Revised Date
2016-04-19
Received Date
2016-03-28
Recommended Citation
Li YANG, Bing XU, Hai WANG, Ze-hua DONG.
Preparations of MnO2 Reference Electrodes for Corrosion Monitoring of Reinforced Concrete[J]. Journal of Electrochemistry,
2017
,
23(1): 36-44.
DOI: 10.13208/j.electrochem.160328
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss1/6
References
[1] Apostolopoulos C A, Demis S, Papadakis V G. Chloride-induced corrosion of steel reinforcement-Mechanical performance and pit depth analysis[J]. Construction and Building Materials. 2013, 38: 139-146.
[2] DU R G (杜荣归), Hu R G (胡融刚), Feng Z D (冯祖德), et al. Corrosion behavior of reinforcing steel in concrete[J]. Journal of Electrochemistry (电化学), 2000, 6(3): 305-310.
[3] Hawileh R A, Rasheed H A, Abdalla J A, et al. Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems[J]. Materials & Design. 2014, 53: 972-982.
[4] Liu Y (刘玉), DU R G (杜荣归), Lin C J (林昌健). Effect of chloride ions on the corrosion behavior of reinforcing steel in simulated concrete pore solutions[J]. Journal of Electrochemistry (电化学), 2005, 11(3): 333-336.
[5] Wang J J (王静静), Dong S G (董士刚), Zhang X J (张小娟), et al. In situ detection on electrochemical chloride removal of reinforcement in concrete by combined pH/Cl- Probes[J]. Journal of Electrochemistry (电化学), 2014, 20(02): 95-100.
[6] Ansuini, J. F, Dimond J R. Factors Affecting the Accuracy of Reference Electrodes[J]. Materials performance. 1994, 33(11): 14-17.
[7] Elsener B. Corrosion rate of steel in concrete—Measurements beyond the Tafel law[J]. Corrosion Science. 2005, 47(12): 3019-3033.
[8] Duffó G S, Farina S B, Giordano C M. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures[J]. Electrochimica Acta. 2009, 54(3): 1010-1020.
[9] Zhang L L (张玲玲), Du M (杜敏), Yan M (颜民). Rsearch progress of refference electrode for engineering[J]. Corrosion Science and Protrction Technology (腐蚀科学与防护技术), 2006, 18(6): 433-435.
[10] Hu S X (胡士信). Development and performance evaluation of long life copper sulfate reference electrode[J]. Materials Protection (材料保护), 1991, 24(02): 24-27.
[11] Jin M, Xu J, Jiang L, et al. Electrochemical Characterization of a Solid Embeddable Ag/AgCl Reference Electrode for Corrosion Monitoring in Reinforced Concrete[J]. Electrochemistry. 2014, 82(12): 1040-1046.
[12] Muralidharan S, Ha T, Bae J, et al. Electrochemical studies on the performance characteristics of solid metal–metal oxide reference sensor for concrete environments[J]. Sensors and Actuators B: Chemical. 2006, 113(1): 187-193.
[13] Muralidharan S, Ha T H, Bae J H, et al. A promising potential embeddable sensor for corrosion monitoring application in concrete structures[J]. Measurement. 2007, 40(6): 600-606.
[14] Muralidharan S, Saraswathy V, Madhavamayandi A, et al. Evaluation of embeddable potential sensor for corrosion monitoring in concrete structures[J]. Electrochimica Acta. 2008, 53(24): 7248-7254.
[15] Gao Y J (高永晶), Hao J L (郝敬丽), Dong Z H (董泽华). Preparation and properties of solid-state chloride ion selective electrode for detecting chloride ions in concrete[J]. Corrosion Science and Protrction Technology (腐蚀科学与防护技术), 2015, 27(03): 211-218.
[16] Montemor M F, Alves J H, Simões A M, et al. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures[J]. Cement and Concrete Composites. 2006, 28(3): 233-236.
[17] Xia X (夏熙) . The electrochemistry of manganese dioxide electrodes (1)[J]. Chinese Battery Industry (电池工业), 2005, 10(1): 54-56.
[18] Lu S (卢爽), Bang H J (巴恒静), Yang Y Z (杨英姿). MnO2 reference electrode for monitoring corrosion in concrete structures[J]. Journal of Wuhan University of Technology (武汉理工大学学报), 2009, 31(02): 42-45.
[19] Huang G S (黄国胜), Wu J H (吴建华), Chen G Z (陈光章). Fabrication and properties of manganese dioxide reference electrode[J]. Materials Protection (材料保护), 2005, 38(8): 39-41.
[20] Fan L (樊玲), Wei J (卫军), Peng S Q (彭述权), et al. Effect of alkaline electrolyte on performance of embedded MnO2 reference electrode[J]. Journal of Wuhan University of Technology (武汉理工大学学报), 2013, 35(12): 130-134.
[21] Fan L (樊玲), Wei J (卫军), Peng S Q (彭述权), et al. Studies on the performance characteristics of manganese oxide reference electrode for concrete environments[J]. Chinese Journal of Sensors And Actuators (传感器学报). 2014, 27(06): 709-714.
[22] K N V, L B, A H. Production and characterisation of titanium doped electrolytic manganese dioxide for use in rechargeable alkaline zincrmanganese dioxide batteries[J]. Journal of power sources. 2000, 87(1): 205-211.
[23] X W, Y L. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods[J]. Chemistry-a European Journal. 2003, 9(1): 300-306.
[24] Kuo P, Wu C, Lu C, et al. High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte[J]. ACS Applied Materials & Interfaces. 2014, 6(5): 3156-3162.
[25] Rakanta E, Zafeiropoulou T, G. B. Corrosion protection of steel with DMEA-based organic inhibitor[J]. Construction and Building Materials. 2013, 44: 507-513.
[26] Zhao B (赵冰), DU R G (杜荣归), Lin C J (林昌健). A study of three corrosion inhibitors for reinforcing steel in SPS solution by electrochemical methods[J]. Journal of Electrochemistry (电化学), 2005(04): 382-386.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons