•  
  •  
 

Corresponding Author

Jun CHENG(chengjun@xmu.edu.cn)

Abstract

As one of the most commonly-used materials for photocatalysis and solar energy conversion, titanium dioxide (TiO2) has been extensively studied for more than 40 years. Its photoelectrochemical activity crucially depends on the band positions at the interface. In this work, the valence band maximum (VBM) and conduction band minimum (CBM) of a model TiO2 surface are computed using the standard work function method at the level of Perdew-Burke-Ernzerhof (PBE) density functional, which are then converted to the scale of the standard hydrogen electrode (SHE) by subtracting the absolute SHE potential. Comparing with the rutile TiO2(110) surface, we find a similar upshift in the VBM and CBM upon the adsorption of water molecules on the anatase TiO2(101) surface, and the band gap error intrinsic to the PBE functional can be mainly attributable to mis-positioning of the VBM. In addition, in contrast to the finding on the rutile TiO2(110) surface that the adsorption of 1 monolayer water largely recovers the band alignment of the aqueous interface, our preliminary calculations indicate that on the anatase TiO2(101) surface there is a considerable difference between the simplified model with the adsorption of 1 monolayer water and the fully solvated interface, suggesting the necessity to include the water molecules beyond the first adsorption layer in order to realistically represent the anatase TiO2 water interface.

Graphical Abstract

Keywords

anatase, valence band maximum, conduction band minimum, band alignment, density functional theory

Publication Date

2017-02-28

Online Available Date

2016-05-16

Revised Date

2016-05-12

Received Date

2016-04-20

References

[1] Scanlon D O, Dunnill C W, Buckeridge J, et al. Band alignment of rutile and anatase TiO2[J]. Nat Mater, 2013,12(9): 798-801.

[2] Xiong G, Shao R, Droubay T C, et al. Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals[J]. Advanced Functional Materials, 2007,17(13): 2133-2138.

[3] Kullgren J, Aradi B, Frauenheim T, et al. Resolving the controversy about the band alignment between rutile and anatase: the role of OH-/H+ adsorption[J]. Journal of Physical Chemistry C, 2015,119(38): 21952-21958.

[4] Sanches F F, Mallia G, Liborio L, et al. Hybrid exchange density functional study of vicinal anatase TiO2 surfaces[J]. Physical Review B, 2014,89(24): 245309.

[5] Wang Y, Ma J, Zhou J P, et al. First-principles study of the electronic structure of nonmetal-doped anatase TiO2[J]. Journal of the Korean Physical Society, 2016,68(3): 409-414.

[6] Unal H, Gunceler D, Gulseren O, et al. Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates[J]. Applied Surface Science, 2015,354: 437-442.

[7] Valentin C D, Selloni A. Bulk and surface polarons in photoexcited anatase TiO2[J]. The Journal of Physical Chemistry Letters, 2011,2(17): 2223-2228.

[8] Cheng J, Sprik M. Aligning electronic energy levels at the at the TiO2/H2O interface[J]. Physical Review B, 2010,82(8): 081406.

[9] Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358): 37-38.

[10] Gong X Q, Selloni A, Vittadini A. Density functional theory study of formic acid adsorption on anatase TiO2(001): Geometries, energetics, and effects of coverage, hydration, and reconstruction[J]. Journal of Physical Chemistry B, 2006,110(6): 2804-2811.

[11] Wang Y, Zhang H M, Liu P R, et al. Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction[J]. RSC Advances, 2013,3(23): 8777-8782.

[12] Mao X C, Lang X F, Wang Z Q, et al. Band-gap states of TiO2(110): major contribution from surface defects[J]. Journal of Physical Chemistry Letters, 2013,4(22): 3839-3844.

[13] Rodriguez H F, Tranca D C, Szyja B M, et al. Water splitting on TiO2-based electrochemical cells: a small cluster study[J]. Journal of Physical Chemistry C, 2016,120(1): 437-449.

[14] Pan J, Liu G, Lu G Q, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals[J]. Angew Chem Int Ed Engl, 2011,50(9): 2133-2137.

[15] Cheng J, Sulpizi M, Sprik M. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics[J]. The Journal of Chemical Physics, 2009,131(15): 154504.

[16] Trasatti S. The absolute electrode potential: an explanatory note[J]. Pure and Applied Chemistry, 1986,58(7): 955-966.

[17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18): 3865-3868.

[18] Ehrlich S, Moellmann J, Reckien W, et al. System-dependent dispersion coefficients for the DFT-D3 Treatment of adsorption processes on ionic surfaces[J]. Chemphyschem, 2011,12(17): 3414-3420.

[19] Moellmann J, Ehrlich S, Tonner R, et al. A DFT-D study of structural and energetic properties of TiO2 modifications[J]. Journal of Physics-Condensed Matter, 2012,24(42): 424206.

[20] The CP2K developers group. http://cp2k.berlios.de (accessed Feb 2010).

[21] VandeVondel J, Krack M, Mohamed F, et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach[J]. Computer Physics Communications, 2005,167(2): 103-128.

[22] Goedecker S, Teter M, Hutter J. Separable dual-space gaussian pseudopotentials[J]. Physical Review B, 1996,54(3): 1703-1710.

[23] Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998,58(7): 3641-3662.

[24] VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. Journal of Chemical Physics, 2007,127(11): 114105.

[25] Cheng J, Sprik M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics[J]. Journal of Chemical Theory and Computation, 2010,6(3): 880-889.

[26] Cheng J, Sulpizi M, VandeVondele J, et al. Hole localization and thermochemistry of oxidative dehydrogenation of aqueous rutile TiO2(110)[J]. ChemCatChem, 2012,4(5): 636-640.

[27] Sun C H, Liu L M, Selloni A, et al. Titania-water interactions: a review of theoretical studies[J]. Journal of Materials Chemistry, 2010,20(46): 10319-10334.

[28] He Y, Tilocca A, Dulub O, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)[J]. Nat Mater, 2009,8(7): 585-589.

[29] Zhao W N, Liu Z P. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings[J]. Chemical Science, 2014,5(6): 2256-2264.

[30] Arrouvel C, Digne M, Breysse M, et al. Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase-TiO2 and gamma-alumina catalytic supports[J]. Journal of Catalysis, 2004,222(1): 152-166.

[31] Sanchez V M, Sued M, Scherlis D A. First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent[J]. Journal of Chemical Physics, 2009,131(17): 174108.

[32] Li Y F, Selloni A. Theoretical study of interfacial electron transfer from reduced anatase TiO2(101) to adsorbed O2[J]. J Am Chem Soc, 2013,135(24): 9195-9199.

[33] He Y B, Dulub O, Cheng H Z, et al. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101)[J]. Physical Review Letters, 2009,102(10): 106105.

[34] Hiemstra T, Venema P, VanRiemsdijk W H. Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle[J]. Journal of Colloid and Interface Science, 1996,184(2): 680-692.

[35] Cheng J, Liu X, VandeVondele J, et al. Redox potentials and acidity constants from density functional theory based molecular dynamics[J]. Acc Chem Res, 2014,47(12): 3522-3529.

[36] Cheng J, Liu X D, Kattirtzi J A, et al. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2[J]. Angew. Chem., Int. Ed., 2014,53(45): 12046-12050.

[37] Cheng J, Liu X D, VandeVondele J, et al. Reductive hydrogenation of the aqueous rutile TiO2(110) surface[J]. Electrochimica Acta, 2015,179: 658-667.

[38] Cheng H Z, Selloni A. Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics[J]. Langmuir, 2010,26(13): 11518-11525.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.