Abstract
Biomimetic ionic channels of synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have significant application potentials for active transport control of ions, fluids, and bioparticles on the nanoscale. Ion selectivity is an important phenomenon of ion transport in nanofluidic devices, which has great theoretical significance and practical values. We propose a pressure control scheme to control the ion selectivity in biomimetic nano-systems with pH-tunable PE brushes. Effects of the solution properties (i.e., pH and background salt concentration), the applied voltage and pressure on ion selectivity are comprehensively investigated. The results show that ion selectivity is sensitive to pressure. Unlike the influence of voltage on ion selectivity which is subject to pH and background salt concentration with uncertain directions and uncontrollable speeds, the influence of pressure on ion selectivity is not restricted by the properties of the solution, and has fixed directions and flexible and controllable speeds. The obtained result is a good inspiration for the design of synthetic nanopores functionalized with pH-tunable PE brushes.
Graphical Abstract
Keywords
pH-tunable polyelectrolyte layer, synthetic nanopore, ion transport, ion selectivity
Publication Date
2017-02-28
Online Available Date
2016-03-07
Revised Date
2016-02-22
Received Date
2016-01-04
Recommended Citation
Hui-xia SHAN, Zhen-ping ZENG, Li-xian YE, Feng SHU.
Effect of Pressure on Ion Selectivity in Biomimetic Nanopores with pH-Tunable Polyelectrolyte Brushes[J]. Journal of Electrochemistry,
2017
,
23(1): 64-71.
DOI: 10.13208/j.electrochem.160104
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss1/9
References
[1] Xu H, Lei J. Learning from nature: building bio-inspired smart nanochannels[J]. Acs Nano, 2009, 3(11): 3339-3342.
[2] Plesa C, Kowalczyk S W, Zinsmeester R, et al. Fast translocation of proteins through solid state nanopores[J]. Nano Letters, 2013, 13(2): 658-663.
[3] Pang P, He J, Park J H, et al. Origin of giant ionic currents in carbon nanotube channels[J]. Acs Nano, 2011, 5(9): 7277-7283.
[4] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[5] Ai Y, Zhang M, Sang W J, et al. Effects of electroosmotic flow on ionic current rectification in conical nanopores[J]. Journal of Physical Chemistry C, 2010, 114(9): 3883-3890.
[6] Dzmitry H, Perry J M, Jacobson S C, et al. Propagating concentration polarization and ionic current rectification in a nanochannel-nanofunnel device[J]. Analytical Chemistry, 2011, 84(1): 267-274.
[7] Jung-Yeul J, Punarvasu J, Leo P, et al. Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization[J]. Analytical Chemistry, 2009, 81(8): 3128-3133.
[8] Ying-Chih W, Stevens A L, Jongyoon H. Million-fold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.
[9] Adrien P, Clément N, Anne-Marie H G, et al. Electropreconcentration with charge-selective nanochannels[J]. Analytical Chemistry, 2008, 80(24): 9542-9550.
[10] Rhokyun K, Sung Jae K, Jongyoon H. Continuous-flow biomolecule and cell concentrator by ion concentration polarization[J]. Analytical Chemistry, 2011, 83(19): 7348-7355.
[11] Yeh L H, Zhang M, Qian S, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[12] Cheng L J, Guo L J. Rectified Ion transport through concentration gradient in homogeneous silica nanochannels[J]. Nano Letters, 2007, 7(10): 3165-3171.
[13] Kubeil C, Bund A. The role of nanopore geometry for the rectification of ionic currents[J]. J.phys.chem.c, 2011, 115(16): 7866-7873.
[14] Zhang B, Ai Y, Liu J, et al. Polarization effect of a dielectric membrane on the ionic current rectification in a conical nanopore[J]. Journal of Physical Chemistry C, 2011, 115(50): 24951-24959.
[15] Singh K P, Kumar M. Effect of nanochannel diameter and debye length on ion current rectification in a fluidic bipolar diode[J]. Journal of Physical Chemistry C, 2011, 115(46): 22917-22924.
[16] Heyden F H J V D, Bonthuis D J, Stein D, et al. Power generation by pressure-driven transport of ions in nanofluidic channels[J]. Nano Letters, 2007, 7(4): 1022-1025.
[17] Yeh L H, Xue S, Sang W J, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J]. J.Phys.Chem.C, 2012, 116(6): 4209-4216.
[18] Chih-Chang C, Yutaka K, Kyojiro M, et al. Numerical simulation of proton distribution with electric double layer in extended nanospaces[J]. Analytical Chemistry, 2013, 85(9): 4468-4474.
[19] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores[J]. Journal of the American Chemical Society, 2011, 133(34): 13300-13303.
[20] Li-Hsien Y, Mingkan Z, Shizhi Q. Ion transport in a pH-regulated nanopore[J]. Analytical Chemistry, 2013, 85(15): 7527-7534.
[21] Antonio A, Patricio R, Elena G G, et al. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.[J]. Journal of Physical Chemistry B, 2006, 110(110):21205-9.
[22] Wanunu M, Meller A. Chemically modified solid-state nanopores.[J]. Nano Letters, 2007, 7(6):1580-5.
[23] Li-Hsien Y, Mingkan Z, Shizhi Q, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[24] Zhenping Zeng, Ye Ai, Shizhi Qian. PH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.[J]. Physical Chemistry Chemical Physics, 2014, 16(6):2465-2474.
[25] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores.[J]. Journal of the American Chemical Society, 2011, 133(34):13300-3.
[26] Orit P, Mario T, Martin K, et al. Morphology control of hairy nanopores[J]. Acs Nano, 2011, 5(6): 4737-4747.
[27] Mario T, Yitzhak R, Igal S. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores[J]. Journal of the American Chemical Society, 2011, 133(44): 17753-17763.
[28] Mario T, Yitzhak R, Igal S. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes[J]. Acs Nano, 2013, 7(10): 9085-9097.
[29] Ralf Z, Dirk K, Martin K, et al. Electrokinetics of a poly(N-isopropylacrylamid-co-carboxyacrylamid) soft thin film: eviden ce of diffuse segment distribution in the swollen state[J]. Langmuir, 2010, 26(26): 18169-18181.
[30] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[31] Basit Y, Mubarak A, Reinhard N, et al. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes[J]. Journal of the American Chemical Society, 2009, 131(6): 2070-2071.
[32] Ali M, Ramirez P, Mafé S, et al. A pH-tunable nanofluidic diode with a broad range of rectifying properties[J]. Acs Nano, 2009, 3(3): 603-608.