•  
  •  
 

Corresponding Author

Feng-wu WANG(fengwuwang@163.com)

Abstract

The titanium (Ti) based lead oxide (PbO2) electrodes doped with praseodymium oxide (Pr2O3) and polyvinylpyrrolidone (PVP) were prepared by electrodeposition. The surface morphologies and structures of the as-prepared thin films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The results showed that the denser and more uniform coatings with smaller particles and larger surfaces were obtained by doping, which modified the micro-structure of the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. Cyclic voltammetry (CV) was also used to study the electrocatalytic activity of electrodes and higher oxidation capacity was obtained with the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. The accelerated life of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode was considerably longer than that of undoped anode. Compared with conventional Ti/PbO2 electrodes, the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrodes exhibited higher decolorization rate and removal rate of COD, reaching 99% and 87.9%, respectively, after the electrolysis time of 120 min during the process of degrading simulative dyeing wastewater of methylene blue. The good electrocatalytic performance of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 makes it a promising anode for treatment of organic pollutants in aqueous solutions.

Graphical Abstract

Keywords

lead dioxide, co-doped, electrode, rare earth, degradation

Publication Date

2017-06-29

Online Available Date

2017-05-19

Revised Date

2017-05-17

Received Date

2016-11-02

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.