•  
  •  
 

Corresponding Author

Feng-wu WANG(fengwuwang@163.com)

Abstract

The titanium (Ti) based lead oxide (PbO2) electrodes doped with praseodymium oxide (Pr2O3) and polyvinylpyrrolidone (PVP) were prepared by electrodeposition. The surface morphologies and structures of the as-prepared thin films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The results showed that the denser and more uniform coatings with smaller particles and larger surfaces were obtained by doping, which modified the micro-structure of the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. Cyclic voltammetry (CV) was also used to study the electrocatalytic activity of electrodes and higher oxidation capacity was obtained with the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. The accelerated life of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode was considerably longer than that of undoped anode. Compared with conventional Ti/PbO2 electrodes, the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrodes exhibited higher decolorization rate and removal rate of COD, reaching 99% and 87.9%, respectively, after the electrolysis time of 120 min during the process of degrading simulative dyeing wastewater of methylene blue. The good electrocatalytic performance of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 makes it a promising anode for treatment of organic pollutants in aqueous solutions.

Graphical Abstract

Keywords

lead dioxide, co-doped, electrode, rare earth, degradation

Publication Date

2017-06-29

Online Available Date

2017-05-19

Revised Date

2017-05-17

Received Date

2016-11-02

References

[1] Hong X, Zhang R, Tong S, et al.Preparation of Ti/PTFE-F-PbO2 electrode with a long life from the sulfamic acid bath and its application in organic degradation[J]. Chinese Journal of Chemical Engineering, 2011, 19(6): 1033-1038

[2] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidationof chlorinated phenols [J]. Environ Sci Technol, 1999, 33: 1453-1457.

[3] Chahmaria N, Zerroual L, Matrakova M. Influence of Mg2+,Al2+,Co2+,Sn2+and Sb3+on the electrical performance of doped β-lead dioxide [J]. Journal of Power Sources, 2009,19(1): l44-148.

[4] L. Gomes, R.G. Freitas, G.R.P. Malpass,et al. Pt film electrodes prepared by the Pechini method for electrochemical decolourisation of Reactive Orange, J. Appl. Electrochem 2009,39:117€“121.

[5] Comminellis C, Pulgarin C. Anodic oxidation of phenol for wastewater treatment [J]. Journal of Applied Electrochem, 1991, 21: 703-708.

[6] Awad Y M, Abuzaid N S. Electrochemical oxidation of phenol using graphite anodes [J]. Sep Sci Technol, 1999, 34: 699-708.

[7] Li X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005, 39: 1972-1981.

[8] Lozano B C,Comninellis C h, Battisti A D. Service life of Ti/SnO2-Sb2O5 anodes [J]. J. Appl. Electrochem, 1997, 27: 970-974.

[9] Kuramitz H, Nakate Y, Kawasaki M, et al. Application to the removal of bisphenol A using a carbon fiber electrode [J]. Chemosphere, 2001, 45:37-43.

[10] Qi H L, Zhang C X. Pre-oxidative amperometric glucose biosensor incorporated with carbon nanotube and PbO2 [J]. Journal of Electrochemistry, 2006, 12 (3): 319-323.

[11] Li M, Feng C P, Hu W W, et al. Electrochemical degradation of phenol using electrodes of Ti-RuO2-Pt and Ti-IrO2-Pt [J]. Journal of Hazardous Materials, 2008, 24(3): 285-290.

[12] Leonardo S A, Luís A M R, Romeu C, et al. On the performance of Fe and Fe,F dopedTi-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J].Chemosphere, 2007, 66(11): 2035-2043.

[13] Borrás C, Laredo T, Mostany J, et al. Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-Vis and FTIR in situ spectroscopy [J], Electrochimica Acta, 2004, 49(4): 641-648.

[14] Wang Y, Shen Z Y, Chen X C.Effects of experimental parameters on 2,4-dichlorphenol degradation over Er-chitosan-PbO2 electrode[J]. Journal of Hazardous Materials, 2010, 178(1-3): 867-874.

[15] Kong J T, Shi S Y, Kong L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007, 53:2048€“2054.

[16] Yingwu Yao, Haishu Dong, Limiao Jiao, et al. Preparation and Electrocatalytic Property of PbO2-CeO2 Nanocomposite Electrodes by Pulse Reverse Electrodeposition Methods, Journal of The Electrochemical Society, 2016,163 (5): D179-D184.

[17] Qianchi Ma, Lei Liu, Wei Cui, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Yb-doped Ti/SnO2€“Sb/PbO2 anodes and determination of the optimal conditions, RSC Adv., 2015, 5: 84856-84864.

[18] Feng Y J, Cui Y H, Wang J J. Preparation and characterization of Dy doped Ti-base SnO2/Sb electrocatalytic electrod [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(6): 836-841.

[19] Tong S P, Ma C A, Feng H. A novel PbO2 electrode preparation and its application in organic degradation [J]. Electrochimica Acta, 2008, 53:3002-3006.

[20] Limin Chang, Ying Zhou, Xiaoyue Duan, et a1. Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode, Journal of the Taiwan Institute of Chemical Engineers ,2014,45:1338€“1346.

[21] C.A. Martinez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl.Catal. B-Environ. 200,987:105€“145.

[22] Yingwu Yao, Manman Zhao, Chunmei Zhao, et a1. Preparation and properties of PbO2 -ZrO2 nanocomp- osite electrodes by pulse electrodeposition. Electrochimica Acta , 2014,117:453€“ 459.

[23]Qizhou Dai, Yijing Xia, Jianmeng Chen.Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode. Electrochimica Acta , 2016,188:871€“881.

[24]J. Niu, H. Lin, J. Xu, et al. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce doped modified porous nanocrystalline PbO2 film electrode, Environ. Sci. Technol., 2012, 46(18): 10191€“10198.

[25]Duan X, Ma F, Yuan Z, et al.Lauryl benzene sulfonic acid sodiumcarbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol.Electrochim Acta 2012, 76:333€“343.

[26] Casellato U, Cattarin S, Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta, 2003, 48(27) : 3991-3998.

[27] Liu Y, Liu H, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol. Electrochim Acta 2011,56:1352€“1360.

[28] Zhou D L, Gao L J. Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer[J]. Electrochimica Acta, 2007, 53(4), 2060-2064.

[29] Liu H T, Zhang X H, Zhou Y B, et al. The anodic films on lead alloys containing rare-earth elements as positive grids in lead acid battery[J]. Materials Letters, 2003, 57(29): 4597-4600.

[30] Liu Y, Liu H L. Comparative studies on the electrocatalytic properties of modified PbO2 anodes[J]. Electrochimica Acta, 2008, 53 (16): 5077-5083.

[31]Kong J, Shi S, Kong L, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim Acta 2007; 53:2048€“2054.

[32]T .Chen, H. Huang, H.Y Ma, et al. Effects of surface morphology of nano- structured PbO2 thin films on their electrochemical properties Electrochim. Acta 2013,88: 79€“85.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.