•  
  •  
 

Corresponding Author

Ying-hong Zhu(science@zjut.edu.cn);Chun-an Ma(science@zjut.edu.cn)

Abstract

Carbon-hydrogen (C-H) bond is the most basic chemical bond in organic compounds. The activation and direct conversion of C-H bond are the effective methodology for synthesis of different kinds of organic compounds from alkane compounds. The oxidative activation and functionalization of C-H bonds constitute an important and challenging area of investigation. The electro-oxidative activation of C-H bonds to form new C-O, C-C and C-N bonds has proven to be interesting and important in organic chemistry using the clean electron as the oxidant. The target C-O, C-C and C-N compounds could be selectively achieved by choosing the appropriate electrode, supporting electrolyte and solvent, as well as reaction temperature via the constant current or constant potential electrolysis technology.

Graphical Abstract

Keywords

C-H bond, direct electro-oxidation, selectivity

Publication Date

2017-06-29

Online Available Date

2017-03-31

Revised Date

2017-03-30

Received Date

2016-10-31

References

[1]Herrías C I, Yao X Q, Li Z P, et al. Reactions of C-H bonds in water[J]. Chemical Reviews, 2007, 107: 2546-2562.

[2]Bergman R G. C-H activation[J]. Nature, 2007, 466: 391-393.

[3]Skouta R and Li C J. Gold-catalyzed reactions of C-H bonds[J]. Tetrahedron, 2008, 64: 4917-4938.

[4]Yoo E J, Ma S, Mei T S, et al. Pd-catalyzed intermolecular C-H amination with alkylamines[J]. Journal of The American Chemical Society, 2011, 133(20): 7652-7655.

[5]Sun C L, Li B J, Shi Z J. Direct C-H transformation via iron catalysis[J]. Chemical Reviews, 2011, 111: 1293-1314.

[6]McMurray L, O€™Hara F and Gaunt M J. Recent developments in natural product synthesis using meta-catalysed C-H bond functionalisation[J]. Chemical Society Reviews, 2011, 40: 1885-1898.

[7]Liao K B, Negretti S, Musaev D G, et al. Site selective and stereoselective functionalization of unactivated C-H bonds[J]. Nature, 2016, 533: 230-234.

[8] Horn E J, Rosen B R, Chen Y, et al. Scalable and sustainable electrochemical allylic C-H oxidation[J]. Nature, 2016, 533:77-81.

[9] Díaz-Requejo M M, Pérez P J. Coinage metal catalyzed Cˆ’ H bond functionalization of hydrocarbons[J]. Chemical reviews, 2008, 108(8): 3379-3394.

[10]Giri R, Shi B F, Engle K M, et al. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity[J]. Chemical Society Reviews, 2009, 38(11): 3242-3272.

[11]Ma C A(马淳安). Introduction to organic electrosynthesis(有机电化学合成导论)[M]. Beijing: Science Press(科学出版社), 2002.

[12]Ogawa K A and Boydston A J. Recent developments in organocatalyzed electroorganic chemistry[J].Chemistry Letter, 2015, 44: 10-16.

[13]Horn E J, Rosen, B R, Chen Y, et al. Scalable and sustainable electrochemical allylic C-H oxidation[J]. Nature, 2016, 533: 77-81.

[14]Sequeira C A C and Santos D M E. Electrochemical routes for industrial synthesis[J]. Journal of Brazilian Chemistry Society, 2009, 20(3):387-406.

[15]Frontana-Uribe B A, Little R D, Lbanez J G, et al. Organic electrosynthesis: a promising green methodology in organic chemistry[J]. Green Chemistry, 2010, 12: 2099-2119.

[16]Moeller K D. Synthtic applications of anodic electrochemistry[J]. Tetrehedron, 2000, 56:9527-9544.

[17]Dudkina Y B, Gryaznova T V, Sinyashin O G, et al. Ligand-directed electrochemical functionalization of C-H bonds in the presence of the palladium and nickel compounds[J]. Russian Chemical Bulletin, 2015, 64(8):1713-1725.

[18]Yoshida J I, Kataoka K, Horcajada R, et al. Modern strategies in electroorganic synthesis[J]. Chemical Reviews, 2008, 108: 2265-2299.

[19]Wu L L(吴玲玲), Zhu Y H(朱英红), L S S(李姗姗), et al. Study on the direct electo-oxidation of anisaldehyde[J]. Journal of Electrochemistry(电化学), 2011, 17(2): 227-230.

[20]Zhu Y H(朱英红), Zeng H Y(曾红燕), Li S S(李姗姗), et al. Electrochemical oxidation of p-methoxy toluene in BMIBF4 ionic liquid[J]. Acta Physico-Chimica Sinica(物理化学学报), 2012, 28(2): 421-426.

[21]Zhu Y H, Zhu Y, Zeng H Y, et al. A promising electro-oxidation of methyl-substituted aromatic compounds to aldehydes in aqueous imidazole ionic liquid solution[J]. Journal of Electroanalytical Chemistry, 2015, 751: 105-110.

[22]Chen Q(陈琼), Zhu Y H(朱英红), Zhu Y(朱颖), et al. Effect of imidazaole ionic liquids on the electo-oxidation of p-methoxy toluene[J]. Journal of Electrochemistry(电化学), 2014, 20(5):465-469.

[23]Zhu Y H, Chen Z Y, Zhang J Q, et al. The activation of C-H bonds using an EmimAc/MWCNTs composite: a comparison of the composite used as electrolyte and electrode in aqueous media[J], Electrochimica Acta, 2016, 207:308-312.

[24]Meng L, Su J H, Zha Z G, et al. Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C-H activation[J]. Chemistry A European Journal, 2013, 19:5542-5545.

[25]Racowski J M, Ball N D and Sanford M S. C-H bond activation at palladium(Ⅳ) centers[J]. Journal of The American Chemical Society, 2011,133: 18022-18025.

[26]Satio F, Aiso H and Kochi T, et a1.Palladium-catalyzed regioselective homocoupling of arenes using anodic: oxidation formal electrolysis of aromatic carbon-hydrogen bonds[J]. Organometallics, 2014, 33: 6704-6707.

[27]Kirste A, Nieger M, Malkowsky I M, et al. Ortho-selective phenol-coupling reaction by anodic treatment on boron doped diamond electrode using fluorinated alcohols[J]. Chemistry A European Journal, 2009,15: 2273-2277.

[28]Morofuji T, Shimizu, A and Yoshida J I. Metal and chemical-oxidant-free C-H/C-H cross-coupling of aromatic compounds the use of radical-cation pools[J]. Angewandte Chemine International Edition, 2012, 51: 7259-7262.

[29]Morofuji T, Shimizu A and Yoshida J I. Electrochemical C-H amination synthesis of aromatic primary amines via n-arylpyridinium ions[J]. Journal of The American Chemical Society, 2013, 135: 5000-5003.

[30]Herold S, Möhle S, Zirbes M, et al. Electrochemical amination of less-activated alkylated arenes using boron-doped diamond anodes[J].European Journal of Organic Chemistry, 2016, 7: 1274-1278.

[31]Zhang L, Chen H, Zha Z G, et al. Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, mediated by tin microspheres in aqueous medium[J]. Chemical Communications, 2012, 48: 6574-6576.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.