Abstract
A new electrochemiluminescence (ECL) system in aqueous solution was constructed by using meso-tetra(4-sulfophenyl)porphyrin (TSPP) as a luminophoreand potassium peroxydisulfate (K2S2O8) as a reductive–oxidative coreactant. Upon sweeping from 0 V to -1.5 V, two cathodic ECL peaks were found simultaneously. One appeared at -0.8 V, which is corresponding to the reduction of TSPP, another at -1.2 V, that is attributed to the reduction of K2S2O8. And methylene blue could quench the ECL of TSPP effectively. In accordance with the linearity between quenching efficiency and the concentration of methylene blue, a method to determine methylene blue was established. The ECL mechanism was also studied through a series of experiments.
Graphical Abstract
Keywords
electrochemiluminescence, meso-tetra(4-sulfophenyl)porphyrin, cathode; K2S2O8, methylene blue
Publication Date
2017-06-29
Online Available Date
2016-12-23
Revised Date
2016-12-14
Received Date
2016-10-24
Recommended Citation
Yan-fenga WANG, Dia LUO, Duo-liang SHAN, Xiao-quan LU.
Cathodic Electrochemiluminescence of Meso-tetra(4-sulfophenyl)porphyrin/Potassium Peroxydisulfate System[J]. Journal of Electrochemistry,
2017
,
23(3): 307-315.
DOI: 10.13208/j.electrochem.161042
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss3/6
References
[1] Bertolino C., MacSweeney M., Tobin J., et al. A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridisation[J], Biosensors and Bioelectronics, 2005, 21(4): 565-573.
[2] Rivera V. R., Gamez F.J., Keener W.K., et al. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection[J], Analytical Biochemistry, 2006, 353 (2): 248-256.
[3] Huang B.M., Zhou X.B., Xue Z.H., et al. Quenching of the electrochemiluminescence of Ru(bpy)32+/TPA by malachite green and crystal violet[J], Talanta, 2013, 106 (6): 174-180.
[4] Luo L.R., Zhang Z.J., Chen L.J., et al. Chemiluminescent imaging detection of staphylococcal enterotoxin C1 in milk and water samples[J], Food Chemistry, 2006, 97 (2): 355-360.
[5] Wu L., Wang J.S., Feng L.Y., et al. Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique[J], Advanced Materials, 2012, 24 (18) : 2447-2452.
[6] Shan D., Qian B., Ding S. N., et al. Enhanced solid-state electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat[J], Analytical Chemistry, 2010, 82 (13): 5892-5896.
[7] Nepomnyashchii A.B., Kolesov G., Parkinson B.A. Electrogenerated chemiluminescence of BODIPY, Ru(bpy)32+, and 9,10-diphenylanthracene using interdigitated array electrodes[J], ACS Applied Materials & Interfaces, 2013, 5 (13): 5931-5936.
[8] Lu X.Q., Liu D., Du J., et al. Novel cathodic electrochemiluminescence of tris(bipyridine) ruthenium(II) on a gold electrode in acidic solution[J], Analyst, 2012, 137 (3): 588-594.
[9] Lu X.Q., Wang H.F., Du J., et al. Self-quenching in the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) using metabolites of catecholamines as co-reactants, Analyst, 2012, 137 (6): 1416-1420.
[10] Garcia-Segura S., Centellas F., Brillas E. Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode enhancement by electrogenerated superoxide radical anion[J], Journal of Physical Chemistry C, 2012, 116 (29): 15500-15504.
[11] Wang D.M., Zhang Y., Zheng L.L., et al. Singlet oxygen involved luminol chemiluminescence catalyzed by graphene oxide[J], Journal of Physical Chemistry C, 2012, 116 (40): 21622-21628.
[12] Shao K., Wang B. R., Ye S. Y., et al. Signal-Amplified Near-Infrared Ratiometric Electrochemiluminescence Aptasensor Based on Multiple Quenching and Enhancement Effect of Graphene/Gold Nanorods/G-Quadruplex[J], Analytical Chemistry, 2016, 88(16): 8179-8187.
[13] Ma G. Z., Zhou J.Y., Tian C.X., et al. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells[J], Analytical Chemistry, 2013, 85 (8): 3912-3917.
[14] Wang D., Gao M.X., Gao P.F., et al. Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism[J], Journal Physical Chemistry C, 2013, 117 (37): 19219-19225.
[15] Legg K.D., Hercules D.M. Electrochemically generated chemiluminescence of lucigenin[J], Journal of American Chemical Society, 1969, 91 (8): 1902-1907.
[16] Okajima T., Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants[J], Journal of Electroanalytical Chemistry, 2002, 534 (2): 181-187.
[17] Guo J.Z., Cui H., Xu S.L., et al. A new electrogenerated chemiluminescence peak of lucigenin in the hydrogen-evolution region induced by platinum nanoparticles[J], Journal of Physical Chemistry C, 2006, 111 (2): 606-611.
[18] Littigt J.S., Nieman T.A. Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection[J], Analytical Chemistry, 1992, 64 (10): 1140-1144.
[19] Yang M. L., Liu C.Z., Hu X. H., et al. Electrochemiluminescence assay for the detection of acridinium esters[J], Analytica Chimica Acta, 2002, 461 (1): 141-146.
[20] Deng S.Y., Lei J. P., Huang Y., et al. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin[J], Analytical Chemistry, 2013, 85 (11): 5390-5396.
[21] Wang Y., Lu J., Tang L. H., et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J], Analytical Chemistry, 2009, 81 (23): 9710-9715.
[22] Bao L., Sun L.F., Zhang Z. L., et al. Energy-level-related response of cathodic electrogenerated-chemiluminescence of self-assembled CdSe/ZnS quantum dot films[J], Journal of Physical Chemical C, 2011, 115 (38): 18822-18828.
[23] Winkelman J. The distribution of tetraphenylporphinesulfonate in the rumor-bearing rat[J], Cancer Research, 1962, 22 (5): 589-596.
[24] Gomer C.J., Rucker N., Ferrario A., et al. Properties and applications of photodynamic therapy[J], Radiation Research, 1989, 120 (1): 1-18.
[25] Engst P., Kubát P., Jirsa M. The influence of D2O on the photophysical properties of meso-tetra (4-sulphonatophenyl) porphine, Photosan III and tetrasulphonated aluminium and zinc phthalocyanines[J], Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78 (3): 215-219.
[26] Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J], Chemical Society Reviews, 1995, 24 (1): 19-33.
[27] Chen F.C., Ho J.H., Chen C.Y., et al. Electrogenerated chemiluminescence of sterically hindered porphyrins in aqueous media[J], Journal of Electroanalytical Chemistry, 2001, 499 (1): 17-23.
[28] Sagara T., Iizuka J., Niki K. Electroreflectance study of the redox reaction of methylene blue adsorbed on a pyrolytic graphite electrode[J], Langmuir 1992, 8 (3), 1018-1025.
[29] Ju H. X., Zhou J., Cai C. X., et al. The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode[J], Electroanalysis 1995, 7 (12), 1165-1170.
[30] Zhu N. N., Zhang A. P. , Wang Q. J., et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes[J], Analytica. Chimica. Acta, 2004, 510 (2), 163-168.
[31] Erdem A., Kerman K., Meric B., et al. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus[J], Analytica. Chimica. Acta, 2000, 422 (2), 139-149.
[32] Zhao G. C., Zhu J. J., Zhang J. J., et al. Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin[J], Analytica. Chimica. Acta, 1999, 394 (2-3), 337-344.
[33] Nishisaka T., Ennyu H., Takeno T., et al. Photodynamic therapy with methylene blue as photosensitizer[J], Bulletin of The Chemical Society of Japan, 1993, 7, 867-873.
[34] Li W. L.(李五林), Ye F. Q.(叶发青). The improvement of method of content of methylene blue [J], Journal of Mathematical Medicine,(数理医药学杂志) 1995, 8 (4), 334-336.
[35] Lu Y. M.(陆益民). Determination of Methylenblue by Two-Point pot en Tiometric Titration [J], Physical Testing and Chemical Analysis Part B Chemical Analysis, (理化检验: 化学分册) 2005, 41 (8), 580-581.
[36] Yang Q., Hu Y. J., Wei Y. C., et al. In situ detection of methylene blue in tissues by laser desorption vacuum ultraviolet single photon postionization mass spectrometry[J], International Journal of Mass Spectrometry, 2013, 353 (11), 12-18.
[37]Li G. C.(李国成). Study on Synthesis of Water Soluble Amino and Sulfonato Substituted Tetraphenylporphyrin [D], Chang Sha(长沙): Hunan University(湖南大学), 2005年.
[38] Lu X.Q., Wang H.F., Du J., et al. Self-quenching in the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) using metabolites of catecholamines as co-reactants[J], Analyst, 2012, 137 (6), 1416-1420.
[39] Liu X.Q., Shi L.H., Niu W.X., et al. Environmentally friendly and highly sensitive ruthenium(II) tris (2, 2'-bipyridyl) electroch emiluminescent system using 2-(dibutylamino) ethanol as co-reactant[J], Angewandte Chemie International Edition 2007, 119 (3),, 425-428.
[40] White H.S., Bard A.J. Electrogenerated chemiluminescence. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J], Journal of The American Chemical Society, 1982, 104 (25), 6891-6895.
[41] Zhang H. R., Xu J. J., Chen H. Y. Electrochemiluminescence ratiometry: a new approach to DNA biosensing[J], Analytical Chemistry, 2013, 85 (11), 5321-5325.
[42] Miao W. J. Electrogenerated chemiluminescence and its biorelated applications[J], Chemical Reviews, 2008, 108 (7), 2506-2553.
[43] Richter M. M., Bard A. J., Kim W., et al. Electrogenerated chemiluminescence Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores[J], Analytical Chemistry, 1998, 70 (2), 310-318.
[44] Richards T. C., Bard A. J. Electrogenerated chemiluminescence Emission from sodium 9,10-diphenylanthracene-2-sulfonate, thianthrenecarboxylic acids, and chlorpromazine in aqueous media[J], Analytical Chemistry, 1995, 67 (18), 3140-3147.
[45] Richter M. M. Electrochemiluminescence (ECL) [J], Chemical Reviews, 2004, 104 (6), 3003-3036.
[46] Amelia M., Lincheneau C., Silvi S., et al. Electrochemical properties of CdSe and CdTe quantum dots[J], Chemical Society Reviews, 2012, 41 (17), 5728-5743.
[47] Yang S. L., Liang J. S., Luo S. L., et al. Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene[J], Analytical Chemistry, 2013, 85 (16), 7720-7725.