•  
  •  
 

Corresponding Author

Shan-fu LU;Yan XIANG

Abstract

The effect of surface modification modes on proton-over-vanadium ion selectivity was studied by spin-coating chitosan-Phosphotungstic Acid (PWA) as a single or double layer on Nafion membrane surface. To suppress the vanadium ions permeation through the Nafion? membrane in a vanadium redox flow battery (VRFB), the single surface-modified Nafion membrane (Nafion/chitosan-PWA)S and double surface-modified Nafion membrane (Nafion/chitosan-PWA)D demonstrated a 89.9% and 92.7% reduction of vanadium ion permeability in comparison with pristine Nafion, respectively. The (Nafion/chitosan-PWA)D exhibited betterhigher selectivity between proton and vanadium ions than the (Nafion/chitosan-PWA)S at the same layer thickness. Furthermore, the columbic efficiency for the VRFB single cell based on the (Nafion/chitosan-PWA)D at an optimized thickness was 93.5% and the energy efficiency was 80.7% at a charge-discharge current density of 30 mA·cm-2, which wereas higher than the (Nafion/chitosan-PWA)S and pristine Nafion membrane. The modified membranes also possessed adequate chemical stability in the VRFB during charge-discharge cycling measurements.

Graphical Abstract

Keywords

Surface modification mode, Vanadium ion permeability, Ionic selectivity, Vanadium redox flow battery

Publication Date

2017-08-25

Online Available Date

2016-04-22

Revised Date

2016-04-06

Received Date

2016-03-07

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.