Abstract
Transition metal carbides and nitrides are attractive materials for electrodes in many electrochemical energy storage and conversion applications. In the present study, we use density functional theory slab calculations to characterize the surface chemical properties of molybdenum (Mo) and tungsten (W) carbides and nitrides, namely, Mo2C, W2C, Mo2N and W2N with the adsorption of CO, CO2 and O2. These probing molecules provide measures of in both acidity/basicity and redox property of for the surfaces of these carbides and nitrides. Our results show that Lewis basic sites were responsible for CO2 adsorption and the basicity follows followed an order of α-W2C(001) > α-W2N(001) > β-Mo2C(001) > γ-Mo2N(100). Both CO and O2 adsorption provide measures of in the reducing ability of these carbides and nitrides. The results showed a reducing ability in the order of β-W2C(100) > α-Mo2C(100) > α-W2N(001) > α-W2C(001) > β-Mo2C(001) > γ-Mo2N(100). The reducing nature of these carbides and nitrides make them good candidates to substitute noble metals in various catalytic reactions.
Graphical Abstract
Keywords
Density functional theory, Transition metal carbides, Transition metal nitrides, Redox sites, Acidity/basicity.
Publication Date
2017-08-25
Online Available Date
2017-02-21
Revised Date
2017-02-10
Received Date
2017-01-05
Recommended Citation
Jingyun YE, Tianyu ZHANG, Lingyun XU, Shuxia YIN, Krishanthi WEERASINGHE, Pamela UBALDO, Ping and GE Qingfeng HE.
Surface Chemical Properties of Mo2C, W2C, Mo2N and W2N Probed with CO, CO2and O2 Adsorption: A DFT Analysis[J]. Journal of Electrochemistry,
2017
,
23(4): 371-380.
DOI: 10.13208/j.electrochem.170141
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss4/2
References
1. Stottlemyer, A. L.; Kelly, T. G.; Meng, Q.;et al Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis. Surface Science Reports 2012, 67 (9-10), 201-232.
2. Zeng, M.; Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (29), 14942-14962.
3. Liang, C.; Li, W.; Wei, Z.; et al, Catalytic Decomposition of Ammonia over Nitrided MoNx/g-Al2O3 and NiMoNy/g-Al2O3 Catalysts. Industrial & Engineering Chemistry Research 2000, 39 (10), 3694-3697.
4. Lee, J. S.; Locatelli, S.; Oyama, S. T.; et al, Molybdenum carbide catalysts 3. Turnover rates for the hydrogenolysis of n-butane. Journal of Catalysis 1990, 125 (1), 157-170.
5. Ledoux, M. J.; Huu, C. P.; Guille, J.; et al, Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactions: I. Catalyst activation and stabilization: Reaction of n-hexane. Journal of Catalysis 1992, 134 (2), 383-398.
6. Lee, J. S.; Yeom, M.H.; Lee, D.S. , Journal of Molecular Catalysis 1990, 62, 145.
7. Lee, J.S.; Yeom, M.H.; Park, K.Y.; et al., Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. Journal of Catalysis 1991, 128 (1), 126-136.
8. Ramanathan, S.; Oyama, S. T., New Catalysts for Hydroprocessing: Transition Metal Carbides and Nitrides. The Journal of Physical Chemistry 1995, 99 (44), 16365-16372.
9. Claridge, J. B.; York, A. P. E.; Brungs, A. J.; et al, New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide. Journal of Catalysis 1998, 180 (1), 85-100.
10. Patterson, P. M.; Das, T. K.; Davis, B. H., Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Applied Catalysis A: General 2003, 251 (2), 449-455.
11. Meng, H.; Shen, P. K., The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications 2005, (35), 4408-4410.
12. Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg Chem 2015, 54 (5), 2128-36.
13. Fernandez, E. M.; Moses, P. G.; Toftelund, A.; et al, Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angewandte Chemie-International Edition 2008, 47 (25), 4683-4686.
14. Sproul, W. D.; Graham, M. E.; Wong, M.-S.; et al, Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V. Surface and Coatings Technology 1993, 61 (1-3), 139-143.
15. Peter, H.; et al., Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics 2003, 36 (8), 1023.
16. Wang, J.; Castonguay, M.; Deng, J.; et al, RAIRS and TPD study of CO and NO on b-Mo2C. Surface Science 1997, 374 (1-3), 197-207.
17. St. Clair, T.; Dhandapani, B.; Oyama, S. T., Cumene hydrogenation turnover rates on Mo2C: CO and O2 as probes of the active site. Catalysis Letters 1999, 58 (4), 169-171.
18. Wu, W.; Wu, Z.; Liang, C.; et al, In Situ FT-IR Spectroscopic Studies of CO Adsorption on Fresh Mo2C/Al2O3 Catalyst. The Journal of Physical Chemistry B 2003, 107 (29), 7088-7094.
19. Wu, W.; Wu, Z.; Liang, C.; et al, An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2. Physical Chemistry Chemical Physics 2004, 6 (24), 5603-5608.
20. Bej, S. K.; Bennett, C. A.; Thompson, L. T., Acid and base characteristics of molybdenum carbide catalysts. Applied Catalysis A: General 2003, 250 (2), 197-208.
21. McGee, R. C. V.; Bej, S. K.; Thompson, L. T., Basic properties of molybdenum and tungsten nitride catalysts. Applied Catalysis A: General 2005, 284 (1-2), 139-146.
22. Dubois, J.; Epicier, T.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--I. Motivation for a study on W2C and Mo2C and experimental background for an in situ investigation at elevated temperature. Acta Metallurgica 1988, 36 (8), 1891-1901.
23. Epicier, T.; Dubois, J.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--II. In situ high temperature study on W2C1-x and Mo2C1-x. Acta Metallurgica 1988, 36 (8), 1903-1921.
24. Shi, X. R.; Wang, S. G.; Wang, H.; et al, Structure and stability of b-Mo2C bulk and surfaces: A density functional theory study. Surface Science 2009, 603 (6), 852-859.
25. Tominaga, H.; Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide. The Journal of Physical Chemistry B 2005, 109 (43), 20415-20423.
26. Tominaga, H.; Nagai, M., Theoretical study of methane reforming on molybdenum carbide. Applied Catalysis A: General 2007, 328 (1), 35-42.
27. Tominaga, H.; Nagai, M., Mechanism of thiophene hydrodesulfurization on clean/sulfided b-Mo2C(0 0 1) based on density functional theory--cis- and trans-2-Butene formation at the initial stage. Applied Catalysis A: General 2008, 343 (1-2), 95-103.
28. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169.
29. Kresse, G.; Hafner, J., Ab initio molecular dynamics for open-shell transition metals. Physical Review B 1993, 48 (17), 13115.
30. Blochl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953-17979.
31. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758.
32. Parthe, E.; Sadogopan, V., The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallographica 1963, 16 (3), 202-205.
33. Suetin, D.; Shein, I.; Kurlov, A.; et al, Band structure and properties of polymorphic modifications of lower tungsten carbide W2C. Physics of the Solid State 2008, 50 (8), 1420-1426.
34. Suetin, D. V.; Shein, I. R.; Ivanovskii, A. L., Structural, electronic properties and stability of tungsten mono- and semi-carbides: A first principles investigation. Journal of Physics and Chemistry of Solids 2009, 70 (1), 64-71.
35. Bull, C. L.; Kawashima, T.; McMillan, P. F.; et al, Crystal structure and high-pressure properties of g-Mo2N determined by neutron powder diffraction and X-ray diffraction. Journal of Solid State Chemistry 2006, 179 (6), 1762-1767.
36. Suetin, D.; Shein, I.; Ivanovskii, A., Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN. Journal of Structural Chemistry 2010, 51 (2), 199-203.
Included in
Analytical Chemistry Commons, Computational Chemistry Commons, Materials Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons