•  
  •  
 

Corresponding Author

Yan-wu ZHU(zhuyanwu@ustc.edu.cn)

Abstract

Porous carbon materials with high specific surface area and excellent conductivity have wide applications in supercapacitor electrodes. Much effort has been made to synthesize and tailor the microstructures of porous carbon materials via various activation procedures (physical and chemical activations). In particular, the chemical activation using potassium hydroxide (KOH) as an activating reagent is promising because of the well-defined micropore size distribution and ultrahigh specific surface area up to 3000 m2·g-1 of the resulting porous carbons. Based mainly on the previous works taken by the authors and collaborators in the field, we have summarized the activation mechanism of KOH, the conversion of the carbon resources to porous carbons and the performance of the resulting porous carbons in supercapacitor electrodes. We hope that this review will be helpful to promote the development of high-performance porous carbon materials as supercapacitor electrodes.

Graphical Abstract

Keywords

KOH activation, carbon materials, porous, supercapacitor

Publication Date

2017-10-28

Online Available Date

2017-06-07

Revised Date

2017-06-05

Received Date

2017-03-06

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.