•  
  •  
 

Corresponding Author

Yan-wu ZHU(zhuyanwu@ustc.edu.cn)

Abstract

Porous carbon materials with high specific surface area and excellent conductivity have wide applications in supercapacitor electrodes. Much effort has been made to synthesize and tailor the microstructures of porous carbon materials via various activation procedures (physical and chemical activations). In particular, the chemical activation using potassium hydroxide (KOH) as an activating reagent is promising because of the well-defined micropore size distribution and ultrahigh specific surface area up to 3000 m2·g-1 of the resulting porous carbons. Based mainly on the previous works taken by the authors and collaborators in the field, we have summarized the activation mechanism of KOH, the conversion of the carbon resources to porous carbons and the performance of the resulting porous carbons in supercapacitor electrodes. We hope that this review will be helpful to promote the development of high-performance porous carbon materials as supercapacitor electrodes.

Graphical Abstract

Keywords

KOH activation, carbon materials, porous, supercapacitor

Publication Date

2017-10-28

Online Available Date

2017-06-07

Revised Date

2017-06-05

Received Date

2017-03-06

References

[1] Simon P, Gogotsi, Y. Materials for electrochemical capacitors[J]. Nature materials, 2008, 7(11): 845-854.

[2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.

[3] Zhang Y, Feng, H, Wu, X B, et al. Progress of electrochemical capacitor electrode materials: A review[J]. International journal of hydrogen energy, 2009, 34(11): 4889-4899.

[4] Miller J R, Simon, P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889): 651-652.

[5] Pandolfo A G, Hollenkamp, A F. Carbon properties and their role in supercapacitors[J]. Journal of power sources, 2006, 157(1): 11-27.

[6] Fernández J A, Arulepp M, Leis J, et al. EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes[J]. Electrochimica Acta, 2008, 53(24): 7111-7116.

[7] Fan L Z, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry communications, 2006, 8(6): 937-940.

[8] Hou Y, Cheng Y W, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano letters, 2010, 10(7): 2727-2733.

[9] Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites[J]. Journal of Power Sources, 2006, 153(2): 413-418.

[10] Nagarajan N, Humadi H, Zhitomirsky I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors[J]. Electrochimica Acta, 2006, 51(15): 3039-3045.

[11] Xu Y, Tao Y, Zheng X Y, et al. A Metal‐Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm−3[J]. Advanced materials, 2015, 27(48): 8082-8087.

[12] Jiang J, Li Y Y, Liu J P, et al. Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage[J]. Advanced materials, 2012, 24(38): 5166-5180.

[13] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.

[14] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.

[15] Yang Z B, Ren J, Zhang Z T, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical reviews, 2015, 115(11): 5159-5223.

[16] Simon P, Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Accounts of chemical research, 2012, 46(5): 1094-1103.

[17] Titirici M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290.

[18] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.

[19] Smalley R E, Dresselhaus M S, Dresselhaus G, et al. Carbon nanotubes: synthesis, structure, properties, and applications[M]. Springer Science & Business Media, 2003.

[20] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced materials, 2011, 23(42): 4828-4850.

[21] Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano letters, 2010, 10(12): 4863-4868.

[22] Barranco V, Lillo-Rodenas M A, Linares-Solano A, et al. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes[J]. The Journal of Physical Chemistry C, 2010, 114(22): 10302-10307.

[23] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.

[24] Raymundo-Pinero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12): 2498-2507.

[25] Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.

[26] Masarapu C, Wang L P, Li X, et al. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure[J]. Advanced Energy Materials, 2012, 2(5): 546-552.

[27] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.

[28] Wennerberg A N, O'grady T M. Active carbon process and composition. Google Patents 1978.

[29] Marsh H, Reinoso F R. Activated carbon: Elsevier; 2006.

[30] Otowa T, Tanibata R, Itoh M. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon[J]. Gas separation & purification, 1993, 7(4): 241-245.

[31] Lozano-Castello D, Calo, J M, Cazorla-Amoros, D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536.

[32] Raymundo-Pinero E, Azais, P, Cacciaguerra, T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.

[33] Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725.

[34] Romanos J, Beckner M, Rash T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2011, 23(1): 015401.

[35] Xia J L, Chen F, Li J H, et al. Measurement of the quantum capacitance of graphene[J]. Nature nanotechnology, 2009, 4(8): 505-509.

[36] Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials, 2007, 6(3): 183-191.

[37] Yan J, Fan Z J, Sun W, et al. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12): 2632-2641.

[38] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced materials, 2010, 22(35): 3906-3924.

[39] Murali S, Potts J R, Stoller S, et al. Preparation of activated graphene and effect of activation parameters on electrochemical capacitance[J]. Carbon, 2012, 50(10): 3482-3485.

[40] Tsai W Y, Lin R Y, Murali S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from− 50 to 80 C[J]. Nano Energy, 2013, 2(3): 403-411.

[41] Gamby J, Taberna P, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of power sources, 2001, 101: 109-116

[42] Zhang L, Zhang F, Yang X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific reports, 2013, 3: 1408

[43] Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage[J]. Science, 2011, 334(6058): 917-918.

[44] Wu S L, Zhu Y W. Highly densified carbon electrode materials towards practical supercapacitor devices[J]. Science China Materials, 2017, 60(1): 25-38.

[45] Murali S, Quarles N, Zhang L L, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes[J]. Nano Energy, 2013, 2(5): 764-768.

[46] Wu S L, Chen G X, Kim N Y, et al. Creating Pores on Graphene Platelets by Low‐Temperature KOH Activation for Enhanced Electrochemical Performance[J]. Small, 2016, 12(17): 2376-2384.

[47] Zhao X, Zhang L L, Murali S, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors[J]. ACS nano, 2012, 6(6): 5404-5412.

[48] Nam K W, Kim K B. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153(1): A81-A88.

[49] Jin X B, Zhou W Z, Zhang S W, et al. Nanoscale microelectrochemical cells on carbon nanotubes[J]. Small, 2007, 3(9): 1513-1517.

[50] Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236.

[51] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4).

[52] Xu J, Tan Z Q, Zeng W C, et al. A Hierarchical Carbon Derived from Sponge‐Templated Activation of Graphene Oxide for High‐Performance Supercapacitor Electrodes[J]. Advanced Materials, 2016, 28(26): 5222-5228.

[53] Qie L, Chen W M, Xu H H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504.

[54] Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high‐rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition, 2008, 47(2): 373-376.

[55] Zhang L L, Zhao X, Stoller M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J]. Nano letters, 2012, 12(4): 1806-1812.

[56] Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983-5992.

[57] Zhu Y W, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon, 2010, 48(7): 2118-2122.

[58] Wood K N, O'Hayre R, Pylypenko S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications[J]. Energy & Environmental Science, 2014, 7(4): 1212-1249.

[59] Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance[J]. Chemical Physics Letters, 2005, 404(1): 53-58.

[60] Ji H X, Zhao X, Qiao Z H, et al. Capacitance of carbon-based electrical double-layer capacitors[J]. Nature communications, 2014, 5.

[61] Zhang L L, Zhao X, Ji H X, et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science, 2012, 5(11): 9618-9625.

[62] Tan Z Q, Ni K, Chen G X, et al. Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C60 Molecules to Obtain Superior Energy Storage[J]. Advanced Materials, 2016.

[63] Zheng S S, Ju H, Lu X. A High‐Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures[J]. Advanced Energy Materials, 2015, 5(22).

[64] Chen G X, Wu S L, Hui L W, et al. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes[J]. Scientific reports, 2016, 6.

[65] Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications[J]. Energy & Environmental Science, 2011, 4(5): 1592-1605.

[66] Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature materials, 2006, 5(12): 987-994.

[67] Xu B, Wu F, Su Y F, et al. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity[J]. Electrochimica Acta, 2008, 53(26): 7730-7735.

[68] Jiang Q, Qu M Z, Zhang B L, et al. Preparation of activated carbon nanotubes[J]. Carbon, 2002, 40(14): 2743-2745.

[69] Ye J L, Wu S L, Ni K, et al. Diameter‐sensitive breakdown of single‐walled carbon nanotubes upon KOH activation[J]. ChemPhysChem, 2017.

[70] Jagannathan S, Chae H G, Jain R, et al. Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes[J]. Journal of Power Sources, 2008, 185(2): 676-684.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.