Abstract
Supercapacitors (SCs) have stimulated intensive interests for their promising applications in electric vehicles and portable electronics, etc. Electrode material is the most important key component of SCs, which vastly determines the performance of SCs. Carbon and transition metallic compound materials have attracted considerable attention and been widely explored as electrode materials. However, the insufficient capacitance of carbon materials and unsatisfactory conductivity and cyclic stability of transition metallic compounds severely limit their implementation as robust SC electrodes. Herein, we highlight our recent efforts to boost the capacitive performance of carbon and metal oxide/nitride electrodes by rationally structural and componential design. The relationships between structures and performances, as well as the mechanisms are discussed. Finally, we also present our personal perspectives on the further research of these electrodes.
Graphical Abstract
Keywords
Supercapacitors, Carbon-based materials, Transition metallic compounds, Modification
Publication Date
2017-10-28
Online Available Date
2017-04-19
Revised Date
2017-04-19
Received Date
2017-03-20
Recommended Citation
Dun LIN, Xi-yue ZHANG, Yin-xiang ZENG, Ming-hao YU, Xi-hong LU, Ye-xiang TONG.
Recent Advances on Carbon and Transition Metallic Compound Electrodes for High-Performance Supercapacitors[J]. Journal of Electrochemistry,
2017
,
23(5): 560-580.
DOI: 10.13208/j.electrochem.170342
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss5/6
References
[1] HOLDREN J P. Energy and sustainability [J]. Science, 2007, 315(5813): 737-738.
[2] YU M H, WANG Z L, HAN Y, et al. Recent progress in the development of anodes for asymmetric supercapacitors [J]. Journal of Material Chemistry A, 2016, 4(13): 4634-4658.
[3] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. Nature materials, 2008, 7(11): 845-854.
[4] MILLER J R, SIMON P. Electrochemical capacitors for energy management [J]. Science, 2008, 321(5889): 651-652.
[5] CHEE W K, LIM H N, ZAINAL Z, et al. Flexible Graphene-Based Supercapacitors: A Review [J]. The Journal of Physical Chemistry C, 2016, 120(8): 4153-4172.
[6] WINTER M, BRODD R J. What Are Batteries, Fuel Cells, and Supercapacitors? [J]. Chemical Reviews, 2004, 104(10): 4245-4270.
[7] CONWAY B E. Electrochemical supercapacitors: scientific fundamentals and technological applications [M]. Springer Science & Business Media, 2013.
[8] HALL P J, MIRZAEIAN M, FLETCHER S I, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance [J]. Energy & Environmental Science, 2010, 3(9): 1238-1251.
[9] MEFFORD J T, HARDIN W G, DAI S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes [J]. Nature materials, 2014, 13(7): 726-732.
[10] ZHAO X, SANCHEZ B M, DOBSON P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices [J]. Nanoscale, 2011, 3(3): 839-855.
[11] WANG Y, XIA Y. Recent progress in supercapacitors: from materials design to system construction [J]. Advanced Materials, 2013, 25(37): 5336-5342.
[12] WEI W, CHANG L, SUN K, et al. The Bright Future for Electrode Materials of Energy Devices: Highly Conductive Porous Na-Embedded Carbon [J]. Nano Letters, 2016, 16(12): 8029-8033.
[13] LI B, DAI F, XIAO Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor [J]. Energy & Environmental Science, 2016, 9(1): 102-106.
[14] LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage [J]. Science, 2015, 350(6267): 1508-1513.
[15] XU B (徐斌), PENG L (彭璐), WANG G Q (王国庆), et al. Mesoporous Carbon for High Power Supercapacitors [J]. Journal of Electrochemistry (电化学), 2009, 15(01): 9-12.
[16] XU Y, CHEN C-Y, ZHAO Z, et al. Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors [J]. Nano Letters, 2015, 15(7): 4605-4610.
[17] CHI Y W, HU C C, SHEN H H, et al. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping [J]. Nano Letters, 2016, 16(9): 5719-5727.
[18] KIM H K, KAMALI A R, ROH K C, et al. Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications [J]. Energy & Environmental Science, 2016, 9(7): 2249-2256.
[19] XU S Z (许思哲), ZHOU X J (周雪皎), WU K (吴坤), et al. Electrochemical Performances of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites as Supercapacitor Electrodes [J]. Journal of Electrochemistry (电化学), 2012, 18(4): 348-358..
[20] SALUNKHE R R, LIN J, MALGRAS V, et al. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application [J]. Nano Energy, 2015, 11: 211-218.
[21] LV T, YAO Y, LI N, et al. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites [J]. Angewandte Chemie International Edition, 2016, 55(32): 9191-9195.
[22] CHOI C, SIM H J, SPINKS G M, et al. Elastomeric and Dynamic MnO2/CNT Core–Shell Structure Coiled Yarn Supercapacitor [J]. Advanced Energy Materials, 2016, 6(5): 1502119-1502126.
[23] ZHANG H (张浩), CAO G P (曹高萍), YANG Y S (杨裕生), et al. Carbon Nanotube Array Electrodes based Supercapacitors with 3.5V Working Voltage [J]. Journal of Electrochemistry (电化学), 2008, 14(02): 117-120.
[24] YE X Y (叶晓燕), WANG Y Z (王艳芝), SONG H Y (宋海燕), et al. A Study on Supercapacitor Based on Aligned Carbon Nanotubes [J]. Journal of Electrochemistry (电化学), 2008, 14(01): 24-29.
[25] ZHOU X H (周晓航), CHEN Z (陈政). Electrochemical Performance of Screen-Printed Composite Coatings of Conducting Polymers and Carbon Nanotubes on Titanium Bipolar Plates in Aqueous Asymmetrical Supercapacitors [J]. Journal of Electrochemistry (电化学), 2012, 18(5、6): 548-565.
[26] HUANG Y, HUANG Y, ZHU M, et al. Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor [J]. ACS Nano, 2015, 9(6): 6242-6251.
[27] CHENG Y, HUANG L, XIAO X, et al. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode [J]. Nano Energy, 2015, 15: 66-74.
[28] WANG H, YI H, ZHU C, et al. Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes [J]. Nano Energy, 2015, 13: 658-669.
[29] YU D, ZHAI S, JIANG W, et al. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors [J]. Advanced Materials, 2015, 27(33): 4895-4901.
[30] WANG Z, QIN Q, XU W, et al. Long Cyclic Life in Manganese Oxide-Based Electrodes [J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18078-18088.
[31] YANG Y, LEE S, BROWN D E, et al. Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors [J]. Electrochimica Acta, 2016, 211: 524-532.
[32] ZHANG D, ZHANG Y, LUO Y, et al. Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors [J]. Nano Energy, 2015, 13: 47-57.
[33] YANG J, YANG X, ZHONG Y L, et al. Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage [J]. Nano Energy, 2015, 13: 702-708.
[34] YUAN L, LU X H, XIAO X, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure [J]. ACS Nano, 2012, 6(1): 656-661.
[35] WANG L (王亮), LIU G C (刘贵昌), SHI Z C (施志聪). Synthesis of α-MnO2 Microspheres for the Application in Supercapacitor [J]. Journal of Electrochemistry (电化学), 2009, 15(04): 441-444.
[36] WEI Z K (危震坤), HUA X Z (华小珍), XIAO K (肖可), et al. An Investigation on Electrochemical Performance of Supercapacitor Electrode Materials Prepared by MnO2 with four Different Crystal Forms [J]. Journal of Electrochemistry (电化学), 2015, 21(4): 393-398.
[37] XIA H, HONG C, SHI X, et al. Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors [J]. Journal of Material Chemistry A, 2015, 3(3): 1216-1221.
[38] JABEEN N, XIA Q, SAVILOV S V, et al. Enhanced Pseudocapacitive Performance of α-MnO2 by Cation Preinsertion [J]. ACS applied materials & interfaces, 2016, 8(49): 33732-33740.
[39] BAO L, LI T, CHEN S, et al. 3D Graphene Frameworks/Co3O4 Composites Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J]. Small, 2016, 13(5):1602077-1602084.
[40] XU W, CHEN J H, YU M H, et al. Sulphur-doped Co3O4 nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors [J]. Journal of Material Chemistry A, 2016, 4(28): 10779-10785.
[41] LIU Y B, LIN L Y, HUANG Y Y, et al. Investigation of the electroactive capability for the supercapacitor electrode with cobalt oxide rhombus nanopillar and nanobrush arrays [J]. Journal of Power Sources, 2016, 315: 23-34.
[42] FENG C, ZHANG J, HE Y, et al. Sub-3 nm Co3O4 Nanofilms with Enhanced Supercapacitor Properties [J]. ACS nano, 2015, 9(2): 1730-1739.
[43] LIU X Y, GAO Y Q, YANG G W. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes [J]. Nanoscale, 2016, 8(7): 4227-4235.
[44] QI X, ZHENG W, LI X, et al. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life [J]. Scientific Reports, 2016, 6: 33241-33250.
[45] MENG G, YANG Q, WU X, et al. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor [J]. Nano Energy, 2016, 30: 831-839.
[46] CAI G, WANG X, CUI M, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles [J]. Nano Energy, 2015, 12: 258-267.
[47] REN X, GUO C, XU L, et al. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors [J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19930-19940.
[48] LI Q, LIANG C L, LU X F, et al. Ni@NiO core-shell nanoparticle tube arrays with enhanced supercapacitor performance [J]. Journal of Material Chemistry A, 2015, 3(12): 6432-6439.
[49] CHEN X X (陈璇璇), ZHAO Z Z (赵真真), WANG D C (王登超), et al. Synthesis of Mesoporous Nickel Oxide for Supercapacitor Application [J]. Journal of Electrochemistry (电化学), 2011, 17(01): 48-52.
[50] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[51] ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage [J]. Advanced Materials, 2011, 23(42): 4828-4850.
[52] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[53] WANG G M, WANG H Y, LU X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability [J]. Advanced Materials, 2014, 26(17): 2676-2682.
[54] WANG W, LIU W Y, ZENG Y X, et al. A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth [J]. Advanced Materials, 2015, 27(23): 3572-3578.
[55] WANG Z F, HAN Y, ZENG Y X, et al. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors [J]. Journal of Material Chemistry A, 2016, 4(16): 5828-5833.
[56] ZHANG H Z, QIU W D, ZHANG Y F, et al. Surface engineering of carbon fiber paper for efficient capacitive energy storage [J]. Journal of Material Chemistry A, 2016, 4(47): 18639-18645.
[57] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
[58] ZHU Y, MURALI S, CAI W, et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications [J]. Advanced Materials, 2010, 22(35): 3906-3924.
[59] WEN L, LI F, CHENG H-M. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices [J]. Advanced Materials, 2016, 28(22): 4306-4337.
[60] LI L, SONG B, MAURER L, et al. Molecular engineering of aromatic amine spacers for high-performance graphene-based supercapacitors [J]. Nano Energy, 2016, 21: 276-294.
[61] BI H, LIN T, XU F, et al. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage [J]. Nano Letters, 2016, 16(1): 349-354.
[62] ZHAI T, LU X H, WANG H Y, et al. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg [J]. Nano Letters, 2015, 15(5): 3189-3194.
[63] YU M H, HUANG Y C, LI C, et al. Building Three-Dimensional Graphene Frameworks for Energy Storage and Catalysis [J]. Advanced Functional Materials, 2015, 25(2): 324-330.
[64] WANG F X, ZENG Y X, ZHENG D Z, et al. Three-dimensional iron oxyhydroxide/reduced graphene oxide composites as advanced electrode for electrochemical energy storage [J]. Carbon, 2016, 103: 56-62.
[65] ZHAI T, WANG F X, YU M H, et al. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors [J]. Nanoscale, 2013, 5(15): 6790-6796.
[66] YU M H, ZHANG Y F, ZENG Y X, et al. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors [J]. Advanced Materials, 2014, 26(27): 4724-4729.
[67] ZHANG Z S, WANG W, LI C, et al. Highly conductive ethylene–vinyl acetate copolymer/carbon nanotube paper for lightweight and flexible supercapacitors [J]. Journal of Power Sources, 2014, 248: 1248-1255.
[68] ZHANG Z S, ZHAI T, LU X H, et al. Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices [J]. Journal of Material Chemistry A, 2013, 1(3): 505-509.
[69] YANG Z, XU F, ZHANG W, et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application [J]. Journal of Power Sources, 2014, 246: 24-31.
[70] LU Q, CHEN J G, XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors [J]. Angewandte Chemie International Edition, 2013, 52(7): 1882-1889.
[71] ZHENG Y C, LIA Z Q, XU J, et al. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors [J]. Nano Energy, 2016, 20: 94-107.
[72] XIE Y, XIA C, DU H, et al. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor [J]. Journal of Power Sources, 2015, 286: 561-570.
[73] LIU Y, LIU L, KONG L, et al. Supercapacitor Electrode Based on Nano-Vanadium Nitride Incorporated on Porous Carbon Nanospheres Derived from Ionic Amphiphilic Block Copolymers & Vanadium-Contained Ion Assembly Systems [J]. Electrochimica Acta, 2016, 211: 469-477.
[74] ZHU C, SUN Y, CHAO D, et al. A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods [J]. Nano Energy, 2016, 26: 1-6.
[75] ZHU C, YANG P, CHAO D, et al. All Metal Nitrides Solid-State Asymmetric Supercapacitors [J]. Advanced Materials, 2015, 27(31): 4566-4571.
[76] LU X H, WANG G M, ZHAI T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors [J]. Nano Letters, 2012, 12(10): 5376-5381.
[77] ZHI M, XIANG C, LI J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review [J]. Nanoscale, 2013, 5(1): 72-88.
[78] CHEN L, SUN L J, LUAN F, et al. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles [J]. Journal of Power Sources, 2010, 195(11): 3742-3747.
[79] CHEN W, RAKHI R B, HU L, et al. High-Performance Nanostructured Supercapacitors on a Sponge [J]. Nano Letters, 2011, 11(12): 5165-5172.
[80] ZHAI T, XIE S L, YU M H, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors [J]. Nano Energy, 2014, 8: 255-263.
[81] WANG G M, WANG H Y, LING Y C, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting [J]. Nano Letters, 2011, 11(7): 3026-3033.
[82] LU X H, WANG G M, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors [J]. Nano Letters, 2012, 12(3): 1690-1696.
[83] LU X H, ZHENG D Z, ZHAI T, et al. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor [J]. Energy & Environmental Science, 2011, 4(8): 2915-2921.
[84] LU X H, ZHAI T, ZHANG X H, et al. WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J]. Advanced Materials, 2012, 24(7): 938-944.
[85] LU X H, YU M H, WANG G M, et al. H-TiO2 @MnO2 //H-TiO2 @C core-shell nanowires for high performance and flexible asymmetric supercapacitors [J]. Advanced Materials, 2013, 25(2): 267-272.
[86] YU M H, ZHAI T, LU X H, et al. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors [J]. Journal of Power Sources, 2013, 239: 64-71.
[87] LEE K K, DENG S, FAN H M, et al. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials [J]. Nanoscale, 2012, 4(9): 2958-5961.
[88] ZENG Y X, YU M H, MENG Y, et al. Iron-Based Supercapacitor Electrodes: Advances and Challenges [J]. Advanced Energy Materials, 2016, 6(24): 1601053-1601069.
[89] XU X, CAO C, ZHU Y. Facile synthesis of single crystalline mesoporous hematite nanorods with enhanced supercapacitive performance [J]. Electrochimica Acta, 2015, 155: 257-262.
[90] ZHOU H, RUTHER R E, ADCOCK J, et al. Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination [J]. ACS Nano, 2015, 9(3): 2530-2539.
[91] XIA H, HONG C, LI B, et al. Facile Synthesis of Hematite Quantum-Dot/Functionalized Graphene-Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors [J]. Advanced Functional Materials, 2015, 25(4): 627-635.
[92] LIU J, ZHENG M, SHI X, et al. Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors [J]. Advanced Functional Materials, 2016, 26(6): 919-930.
[93] LU X, ZENG Y, YU M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors [J]. Advanced Materials, 2014, 26(19): 3148-3155.
[94] ZENG Y X, HAN Y, ZHAO Y T, et al. Advanced Ti-Doped Fe2O3@PEDOT Core/Shell Anode for High-Energy Asymmetric Supercapacitors [J]. Advanced Energy Materials, 2015, 5(12): 1402176-1402182.
[95] LIN Z, YAN X, LANG J, et al. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods [J]. Journal of Power Sources, 2015, 279: 358-364.
[96] CHOUDHURY A, BONSO J S, WUNCH M, et al. In-situ synthesis of vanadium pentoxide nanofibre/exfoliated graphene nanohybrid and its supercapacitor applications [J]. Journal of Power Sources, 2015, 287: 283-290.
[97] CHEN K, XUE D. High Energy Density Hybrid Supercapacitor: In-Situ Functionalization of Vanadium-Based Colloidal Cathode [J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29522-29528.
[98] QIAN T, XU N, ZHOU J, et al. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors [J]. Journal of Material Chemistry A, 2015, 3(2): 488-493.
[99] LEE M, WEE B-H, HONG J-D. High Performance Flexible Supercapacitor Electrodes Composed of Ultralarge Graphene Sheets and Vanadium Dioxide [J]. Advanced Energy Materials, 2015, 5(7): 1401890-1401898.
[100] YANG Y, ZHAO L, SHEN K, et al. Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage [J]. Journal of Power Sources, 2016, 333: 61-71.
[101] HANUMANTHA P J, DATTA M K, KADAKIA K, et al. Vanadium nitride supercapacitors: Effect of Processing Parameters on electrochemical charge storage behavior [J]. Electrochimica Acta, 2016, 207: 37-47.
[102] BALOGUN M S, QIU W T, WANG W, et al. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices [J]. Journal of Material Chemistry A, 2015, 3(4): 1364-1387.
[103] YU M H, ZENG Y X, HAN Y, et al. Valence-Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Super-Long Cyclic Durability of 100 000 Cycles [J]. Advanced Functional Materials, 2015, 25(23): 3534-3540.
[104] WANG G M, LU X H, LING Y C, et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors [J]. ACS Nano, 2012, 6(11): 10296-10302.
[105] LU X H, YU M H, ZHAI T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode [J]. Nano Letters, 2013, 13(6): 2628-2633.
[106] LU X H, LIU T Y, ZHAI T, et al. Improving the Cycling Stability of Metal-Nitride Supercapacitor Electrodes with a Thin Carbon Shell [J]. Advanced Energy Materials, 2014, 4(4): 1300994-1300999.
[107] YU M H, WANG W, LI C, et al. Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors [J]. Npg Asia Materials, 2014, 6(9): e129-e136.
[108] YU M H, HAN Y, CHENG X Y, et al. Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage [J]. Advanced Materials, 2015, 27(19): 3085-3091.
[109] YU M H, QIU W T, WANG F X, et al. Three dimensional architectures: design, assembly and application in electrochemical capacitors [J]. Journal of Material Chemistry A, 2015, 3(31): 15792-15823.
[110] YU M H, CHENG X Y, ZENG Y X, et al. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells [J]. Angewandte Chemie International Edition, 2016, 55(23): 6762-6766.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons