•  
  •  
 

Corresponding Author

Hua-feng LUO(317306472@qq.com)

Abstract

To improve the electrolyte wettability and thermal resistance of separators used for lithium-ion battery, a novel cellulose acetate (CA)-based separator is facilely prepared by non-solvent induced phase separation (NIPS) wet-process and investigated in lithium-ion batteries. Systematical investigations including morphological characterization, electrolyte wettability and thermal resistance testing were carried out. The results demonstrated that the CA-based separator exhibited well developed three-dimensional porous structures with porosity up to 65%, which is 1.5 times higher than that of PE separator. The CA separator also showed excellent electrolyte uptake (285%) and thermal stability at 150 oC for 30 min. Compared with the commercial PE separator, the CA separator exhibited better electrochemical performances, achieving superior discharge C-rate capability and cycling performance.

Graphical Abstract

Keywords

separator, phase inversion method, cellulose acetate, wettability, thermal resistance, electrochemistry performance

Publication Date

2017-10-28

Online Available Date

2017-03-22

Revised Date

2017-03-22

Received Date

2016-07-23

References

[1] Arora P, Zhang Z M. Battery Separators [J]. Chem. Rev., 2004, 104(10): 4419-4462.

[2] Thackeray M M, Wolverton C, Isaacs C D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(1): 7854-7863.

[3] Wang C (王畅), Wu D Y (吴大勇). LIB separators and the recent technical progress [J]. Energy Storage Science and Technology (储能科学与技术), 2016, 5(2): 120-128.

[4] Bai L (白莉), Huai Y J (怀永建), et al. Characterization of the separator with thermal-shutdown layer for use in lithium batteries [J]. Journal of Electrochemistry (电化学), 2015,10(5): 459-464.

[5] Chen W J, Shi L Y, Wang Z Y, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high performance lithium-ion battery [J]. Carbohydrate Polymers, 2016, 147: 517€“524.

[6]Xiao S Y, Yang Y Q, Li M X, et al. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries [J]. J. Power Sources, 2014, 270: 53€“58.

[7]Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries [J]. Energy & Environmental Science, 2014, 7(12): 3857-3886.

[8] Xiao W, Zhao L N, Gong Y Q, et al. Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries [J]. J. Membr. Sci., 2015, 487: 221-228.

[9] WooJ J , Nam S H, Seo S J, et al. A flame retarding separator with improved thermal stability for safe lithium-ion batteries [J]. Electrochemistry Communications, 2013, 35: 68-71.

[10] Ba C Y, Economy J. Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane [J]. Journal of Membrane Science, 2010, 363: 140-148.

[11] Ji W X (吉维肖), Wang F (王凤), Qian J F (钱江锋), et al. 3,4-ethylenedioxythiophene monomer as safety-enhancing additive for lithium ion batteries [J]. Journal of Electrochemistry (电化学), 2016, 22(3): 271-277.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.