•  
  •  
 

Corresponding Author

Fang-zu YANG(fzyang@xmu.edu.cn)

Abstract

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were used to study the electrodeposition mechanism of trivalent chromium on a copper electrode in the novel sulphate electrolyte for thick trivalent chromium plating. The thickness, morphology, composition, microhardness, and structure, as well as the corrosion resistance in 3.5wt% NaCl solution of the trivalent chromium coatings were investigated by X-ray fluorescence gage, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microhardness tester, X-ray diffraction (XRD) and Tafel curve measurements. The results showed that the electrodeposition of trivalent chromium involved two consecutive one electron reduction steps. The first step, Cr3+ + e → Cr2+,is controlled by the electrochemical reduction and diffusion processes, and the second step, Cr2+ + 2e → Cr, is an irreversible process under the diffusion control. The trivalent chromium coating exhibited nodular nanocrystalline structure and contained a small amount of iron (1.10wt%). The microhardness of the coating reached to 789.2 Hv. The corrosion potential (Ecorr) and corrosion current density (jcorr) of the coating in 3.5wt% NaCl solution were determined to be -0.29 V and 9.26×10-5 A·dm-2, respectively.

Graphical Abstract

Keywords

Trivalent chromium, Sulphate, Hard chromium, Electrodeposition, Mechanism, Coating Characterization.

Publication Date

2018-02-28

Online Available Date

2017-05-18

Revised Date

2017-05-17

Received Date

2017-04-14

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.