•  
  •  
 

Corresponding Author

Fang-zu YANG(fzyang@xmu.edu.cn)

Abstract

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were used to study the electrodeposition mechanism of trivalent chromium on a copper electrode in the novel sulphate electrolyte for thick trivalent chromium plating. The thickness, morphology, composition, microhardness, and structure, as well as the corrosion resistance in 3.5wt% NaCl solution of the trivalent chromium coatings were investigated by X-ray fluorescence gage, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microhardness tester, X-ray diffraction (XRD) and Tafel curve measurements. The results showed that the electrodeposition of trivalent chromium involved two consecutive one electron reduction steps. The first step, Cr3+ + e → Cr2+,is controlled by the electrochemical reduction and diffusion processes, and the second step, Cr2+ + 2e → Cr, is an irreversible process under the diffusion control. The trivalent chromium coating exhibited nodular nanocrystalline structure and contained a small amount of iron (1.10wt%). The microhardness of the coating reached to 789.2 Hv. The corrosion potential (Ecorr) and corrosion current density (jcorr) of the coating in 3.5wt% NaCl solution were determined to be -0.29 V and 9.26×10-5 A·dm-2, respectively.

Graphical Abstract

Keywords

Trivalent chromium, Sulphate, Hard chromium, Electrodeposition, Mechanism, Coating Characterization.

Publication Date

2018-02-28

Online Available Date

2017-05-18

Revised Date

2017-05-17

Received Date

2017-04-14

References

[1] Zeng Z X, Wang L P, Liang A M, et al. Tribological and electrochemical behavior of thick Cr-C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings[J]. Electrochimica Acta, 2006, 52(3): 1366-1373.

[2] Danilov F I, Protsenko V S, Butyrina T E, et al. Electroplating of chromium coatings from Cr(III)-based electrolytes containing water soluble polymer[J]. Protection of Metals, 2006, 42(6): 560-569.

[3] Protsenko V S, Danilov F I. Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages[J]. Clean Technologies and Environmental Policy, 2014, 16(6): 1201-1206.

[4] Hamid Z A, Ghayad I M, Ibrahim K M. Electrodeposition and characterization of chromium-tungsten carbide composite coatings from a trivalent chromium bath[J]. Surface and Interface Analysis, 2005, 37(6): 573-579.

[5] Li B S, Lin A, Wu X, et al. Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte[J]. Journal of Alloys and Compounds, 2008, 453(1/2): 93-101.

[6] Edigaryan A A, Safonov V A, Lubnin E N, et al. Properties and preparation of amorphous chromium carbide electroplates[J]. Electrochimica Acta, 2002, 47(17): 2775-2786.

[7] Sziraki L, Kuzmann E, Papp K, et al. Electrochemical behaviour of amorphous electrodeposited chromium coatings[J]. Materials Chemistry and Physics, 2012, 133(2/3): 1092-1100.

[8] Jiang Y F, Yang F Z, Tian Z Q, et al. Effects of iron ion contents on composition, morphology, structure and properties of chromium coatings electrodeposited from novel trivalent chromium sulphate electrolyte[J]. Transactions of the Institute of Metal Finishing, 2012, 90(2): 86-91.

[9] Danilov F I, Protsenko V S, Gordiienko V O, et al. Nano-crystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Applied Surface Science, 2011, 257(18): 8048-8053.

[10] Danilov F I, Protsenko V S, Butyrina T E, et al. Electrodeposition of nanocrystalline chromium coatings from Cr(III)-based electrolyte using pulsed current[J]. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47(5): 598-605.

[11] Protsenko V S, Danilov F I, Gordiienko V O, et al. Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath[J]. Thin Solid Films, 2011, 520(1): 380-383.

[12] Zeng Z O(曾振欧), Kang Z H(康振华), Zhao G P(赵国鹏). Study on charcateristics of thick chromium deposit-from trivalent chromium sulfate solution[J]. Electroplating & Finishing(电镀与涂饰), 2010, 29(6): 8-11.

[13] Zeng Z X, Sun Y L, Zhang J Y. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid[J]. Electrochemistry Communications, 2009, 11(2): 331-334.

[14] Song Y B, Chin D T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process[J]. Electrochimica Acta, 2002, 48(4): 349-356.

[15] Kuznetsov V V, Vinokurov E G, Kudryavtsev V N. Kinetics of electroreduction of Cr3+ ions in sulfate solutions[J]. Russian Journal of Electrochemistry, 2001, 37(7): 699-703.

[16] Protsenko V, Danilov F. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds[J]. Electrochimica Acta, 2009, 54(24): 5666-5672.

[17] Jiang Y F(蒋义锋), Yang F Z(杨防祖), Xu S K(许书楷), et al. A novel process for trivalent chromium plating in sulfate bath[J]. Materials Protection(材料保护), 2010, 43(8): 32-35.

[18] Kityk A A, Protsenko V S, Danilov F I. Voltammetry study of Cr(III)/Cr(II) system in methanesulfonate and sulfate solutions: Temperature dependences[J]. Journal of Electroanalytical Chemistry, 2013, 689: 269-275.

[19] Protsenko V S, Kityk A A, Danilov F I. Voltammetry study of Cr(III)/Cr(II) system in aqueous methanesulfonate solutions[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 213-218.

[20] Bard A J, Faulkne L R. Electrochemical Methods: Fundamental and applications[M]. New York: John Wiley, 2001:234-236.

[21] Shu X G(舒绪刚), Liao L W(廖列文), He X Z(何湘柱), et al. The mechanism of trivalent chromium electrodeposition and electrocrystallization from trivalent chromium in chloride system[J]. Surface Technology(表面技术), 2010, 39(2): 1-4.

[22] Protsenko V S, Danilov F I. Activation energy of electrochemical reaction measured at a constant value of electrode potential[J]. Journal of Electroanalytical Chemistry, 2011, 651(2): 105-110.

[23] Protsenko V S, Gordiienko V, Butyrina T, et al. Hard chromium electrodeposition from a trivalent chromium bath containing water-soluble polymer[J]. Turkish Journal of Chemistry, 2014, 38(1): 50-55.

[24] Protsenko V S, Gordiienko V O, Danilov F I, et al. Preparation and characterization of nanocrystalline hard chromium coatings using eco-friendly trivalent chromium bath[J]. E-Journal of Chemistry, 2011, 8(4): 1925-1929.

[25] Tu Z M(屠振密), Hu H L(胡会利), Hou F Y(侯峰岩). Review of chromium binary alloy electrodeposition technologies from trivalent chromium baths[J]. Surface Technology(表面技术), 2012, 41(6): 91-94.

[26] Lindsay J H. Decorative & hard chromium plating[J]. Plating and Surface Finishing, 2003, 90(8): 22-24.

[27] Hou F Y(侯峰岩), Tu Z M(屠振密), Qu Y T(屈云腾). Investigation of invironmental friendly low concentration thick chromium sulfate electrodeposition[J]. Journal of Fudan University(Natural Science)(复旦学报(自然科学版)), 2012, 51(2): 168-172.

[28] Zhao K(赵坤), Sun H S(孙化松), Li Y Y(李永彦), et al. The study on characteristics of sulfate trivalent chromium coating[J]. Surface Technology(表面技术), 2009, 38(2): 22-24.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.