Abstract
Hydrogen is a kind of renewable energies with the merits of environmentally friendly, abundance and high weight energy density, which can replace the fossil energy. The electrolysis of water is regarded as the most effective way to generate hydrogen. Owing to the sluggish kinetics and large overpotential of the anode oxygen evolution reaction (OER), the efficiency of the cathode hydrogen evolution reaction is greatly limited. Therefore, it is highly desirable to explore efficient, stable and low cost electrocatalysts to reduce the overpotential of OER and improve the efficiency of hydrogen evolution. Based on the natural characteristics of non-noble metal catalysts and their excellent OER activities in high hydroxyl ion (OH-) concentrations, the OER mechanism in alkaline conditions and the methods for OER performance evaluation are firstly introduced in this review. Then the recent research progresses in non-noble metal nanomaterial electrocatalysts for OER are mainly illustrated. Finally, some perspectives are highlighted with the in-depth insights of catalytic mechanism, the designs of bifunctional and novel non-noble metal catalysts.
Graphical Abstract
Keywords
non-noble metal, nanomaterials, electrocatalysis, oxygen evolution reaction
Publication Date
2018-10-28
Online Available Date
2018-06-26
Revised Date
2018-06-12
Received Date
2018-05-14
Recommended Citation
Dan-dan ZHAO, Nan ZHANG, Ling-zheng Bu, Qi SHAO, Xiao-qing HUANG.
Recent Advances in Non-Noble Metal Nanomaterials for Oxygen Evolution Electrocatalysis[J]. Journal of Electrochemistry,
2018
,
24(5): 455-465.
DOI: 10.13208/j.electrochem.180144
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol24/iss5/5
References
[1] Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Review, 2007, 107(10): 3904-3951.
[2] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337.
[3] Gasteiger H A, Markovic N M. Just a dream-or future reality?[J]. Science, 2009, 324(5923): 48-49.
[4] Hoffert M I, Caldeira K, Jain A K, et al. Energy implications of future stabilization of atmospheric CO2 content[J]. Nature, 1998, 395(6705): 881-884.
[5] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[6] Winsche W E, Hoffman K C, Salzano F J. Hydrogen: Its future role in the nation's energy economy[J]. Science, 1973, 180(4093): 1325-1332.
[7] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[8] Gu S, Xu B J, Yan Y S. Electrochemical energy engineering: A new frontier of chemical engineering innovation[J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5: 429-454.
[9] Peng Z, Jia D S, Al-Enizi A M, et al. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts[J]. Advanced Energy Materials, 2015, 5(9): 1402031.
[10] Kong D S, Cha J J, Wang H T, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy & Environmental Science, 2013, 6(12): 3553-3558.
[11] Hong W T, Risch M, Stoerzinger K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energy & Environmental Science, 2015, 8(5): 1404-1427.
[12] Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 0003.
[13] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459.
[14] Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review[J]. ACS Catalysis, 2016, 6(12): 8069-8097.
[15] Yu X Y, Feng Y, Jeon Y, et al. Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution[J]. Advanced Materials, 2016, 28(40): 9006-9011.
[16] Zhou W J, Wu X J, Cao X H, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energy & Environmental Science, 2013, 6(10): 2921-2924.
[17] Bediako D K, Lassalle-Kaiser B, Surendranath Y, et al. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2012, 134(15): 6801-6809.
[18] Ardizzone S, Fregonara G, Trasatti S. Inner and outer active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267.
[19] Pi Y C, Zhang N, Guo S J, et al. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range[J]. Nano letters, 2016, 16(7): 4424-4430.
[20] Trotochaud L, Ranney J K, Williams K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society, 2012, 134(41): 17253-17261.
[21] Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1): 83-89.
[22] Bockris J O, Reddy A K N, Gamboa-Aldeco M. Modern Electrochemistry 2A. Fundamentals of electrodics[M]. New York, Kluwer Academic, 2000.
[23] Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports, 2015, 5: 13801.
[24] Parent A R, Sakai K. Progress in base-metal water oxidation catalysis[J]. ChemSusChem, 2014, 7(8): 2070-2080.
[25] Huang J H, Chen J T, Yao T, et al. CoOOH nanosheets with high mass activity for water oxidation[J]. Angewandte Chemie International Edition, 2015, 54(30): 8722-8727.
[26] Friebel, D, Louie M. W, Bajdich M, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. Journal of the American Chemical Society, 2015, 137(3): 1305-1313.
[27] Ping J F, Wang Y X, Lu Q P, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced Materials, 2016, 28(35): 7640-7645.
[28] Fan K, Chen H, Ji Y F, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nature Communications, 2016, 7: 11981.
[29] Gong M, Li Y Q, Wang H L, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455.
[30] Hunter B M, Hieringer W, Winkler J R, et al. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity[J]. Energy & Environmental Science, 2016, 9(5): 1734-1743.
[31] Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5: 4477.
[32] Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281.
[33] Yang Y, Zhou M, Guo W L, et al. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation[J]. Electrochimica Acta, 2015, 174(20): 246-253.
[34] Yuan C Z, Wu H B, Xie Y, et al. Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504.
[35] Yang Y, Fei H L, Ruan G D, et al. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers[J]. ACS Nano, 2014, 8(9): 9518-9523.
[36] Xiong X L, You C, Liu Z, et al. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2883-2887.
[37] Gao W, Xia Z M, Cao F X, et al. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706056.
[38] Huang J Z(黄金昭), Xu Z(徐征), Li H L(李海玲), et al. Electrochemical studies of iron-doped nickel oxide electrode for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2006, 12(2): 154-158.
[39] Yang T L(杨太来), Dong W Y(董文燕), Yang H M(杨慧敏), et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2007, 19(13): 4256-4259.
[40] Qin J S, Du D Y, Guan W, et al. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. Journal of the American Chemical Society, 2015, 137(22): 7169-7177.
[41] Miner E M, Fukushima T, Sheberla D, et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2[J]. Nature Communications, 2016, 7: 10942.
[42] Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135.
[43] Li S P, Zhang G, Tu X M, et al. Polycrystalline CoP/CoP2 structures for efficient full water splitting[J]. ChemElectroChem, 2018, 5(4): 701-707.
[44] Gu Y, Chen S, Ren J, et al. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(1): 245-253.
[45] Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(6): 1502313.
[46] Jiang H L, Yao Y F, Zhu Y H, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21511-21520.
[47] Du Y S, Cheng G Z, Luo W. NiSe2/FeSe2 nanodendrites: A highly efficient electrocatalyst for oxygen evolution reaction[J]. Catalysis Science & Technology, 2017, 7(20): 4604-4608.
[48] Sun X H, Shao Q, Pi Y C, et al. A general approach to synthesise ultrathin NiM (M= Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7769-7775.
[49] Long X, Li J K, Xiao S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(29): 7584-7588.
[50] Zhang Y, Shao Q, Pi Y C, et al. A cost-efficient bifunctional ultrathin nanosheets array for electrochemical overall water splitting[J]. Small, 2017, 13(27): 1700305.
[51] Zhang B, Zheng X L, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337.
[52] Pi Y C, Shao Q, Wang P T, et al. Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2017, 56(16): 4502-4506.
[53] Feng J X, Ye S H, Xu H, et al. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J]. Advanced Materials, 2016, 28(23): 4698-4703.
[54] Zhang Y, Shao Q, Long S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 45: 448-455.
[55] Gao W, Xia Z M, Cao F X, et al. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706056.
[56] Ye Z G, Li T, Ma G, et al. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction[J]. Advanced Functional Materials, 2017, 27(44): 1704083.
[57] Gao X H, Zhang H X, Li Q G, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie International Edition, 2016, 55(21): 6290-6294.
[58] Yang H D, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4[J]. ACS Catalysis, 2017, 7(8): 5557-5567.
[59] Sun Y F, Gao S, Lei F C, et al. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts[J]. Chemical Science, 2014, 5(10): 3976-3982.
[60] Lyu Y Q, Ciucci F. Activating the bifunctionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35829-35836.
[61] Zhu Y L, Zhou W, Chen Z G, et al. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution[J]. Angewandte Chemie International Edition, 2015, 54(13): 3897-3901.
[62] Liu S B, Luo H, Li Y H, et al. Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10-δ[J]. Nano Energy, 2017, 40: 115-121.
[63] Li F L, Shao Q, Huang X Q, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(7): 1888-1892.
[64] Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184.
[65] Lu X F, Liao P Q, Wang J W, et al. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society, 2016, 138(27): 8336-8339.
[66] Zhou M, Weng Q H, Zhang X Y, et al. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms[J]. Journal of Materials Chemistry A, 2017, 5(9): 4335-4342.
[67] Chen P Z, Xu K, Fang Z W, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714.
[68] Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.
[69] Xu X, Liu J, Wu H Z, et al. Highly crystalline nickel borate nanorods as oxygen evolution reaction electrocatalysts[J]. Journal of Electrochemistry, 2018, 24(4): 319-323.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons